首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以Si、Al2O3、MoSi2微粉和生物竹材为原料,采用包埋烧结法分别制备出SiC多孔材料、Al2O3/SiC、MoSi2/SiC复合材料。采用XRD、SEM及波导法测试其物相组成、显微结构及吸波性能。结果表明:MoSi2/SiC复合材料的厚度为2 mm时有明显的吸波特性,有效吸收带宽在X波段的9.65~12.4 GHz频率范围内达2.75 GHz,且最低反射损耗为-38.27 dB。Al2O3/SiC复合材料孔道内的Al2O3与SiC晶须交缠,形成大量电偶极矩,产生介电损耗;MoSi2/SiC复合材料除介电损耗外还存在电阻损耗,使得复合材料电磁损耗增加,是较有前途的结构功能吸波材料。  相似文献   

2.
以葡萄糖、Si粉、碳纤维为原料,镍为催化剂,采用水热反应-烧结法制备了C_f/SiC/Ni和C_f/MoSi_2/SiC/Ni复合吸波材料。通过X射线衍射、扫描电子显微镜、波导法分别表征了C_f/SiC/Ni和C_f/MoSi2/SiC/Ni复合材料的相组成、微观结构和吸波特性。结果表明:C_f/SiC/Ni复合材料上生长的Si C纳米线稀疏且分布不均匀;厚度为1.5 mm时,在8.20 GHz处最小反射损耗为–14.61 dB,有效吸收带宽为0.23 GHz。C_f/MoSi_2/SiC/Ni复合材料的碳纤维表面生长大量SiC纳米线,分布致密且均匀;厚度为2.0 mm时,在9.10 GHz时最小反射损耗为–34.14 dB,有效吸收带宽达2.18 GHz。与C_f/SiC/Ni复合材料相比,添加MoSi_2的C_f/MoSi_2/SiC/Ni复合材料吸波性能更好,说明MoSi_2可有效改善C_f/SiC/Ni复合材料的微观结构及吸波性能。  相似文献   

3.
针对氧化铝陶瓷和金属钼的特点,为解决氧化铝陶瓷低温脆性大、金属钼高温易氧化和蠕变等问题,通过溶胶凝胶法制备金属陶瓷颗粒,采用放电等离子烧结(SPS)制备了配比不同的Mo/Al_2O_3金属陶瓷复合材料,探究了Mo颗粒含量对Mo/Al_2O_3金属陶瓷性能的影响。结果表明:在1400℃下进行真空放电等离子烧结可得到Mo/Al_2O_3金属陶瓷,且在vol.%Mo=x(x=15,20,25)范围内、组分配比相同的情况下,添加20%Mo可制得综合性能较好的Mo/Al_2O_3金属陶瓷,其密度为5.2g/cm~3、硬度(HV0.5)为12.7、断裂韧性4.24MPa·m~(1/2)。  相似文献   

4.
采用固相烧结法制备MoSi_2/Al_2O_3复合材料,研究了空气、真空、Ar气氛对显微结构及介电性能的影响。结果表明:Ar气氛下试样烧结性能好于真空及空气气氛,MoSi_2颗粒被Al_2O_3包覆且分散均匀;3种气氛下烧成的试样均含MoSi_2、Al_2O_3和Mo_5Si_3相,而空气下发现有SiO_2,真空及Ar保护气氛有少量Mo;空气气氛下烧成的复合材料气孔率最大,断裂韧性与抗弯强度最低;Ar保护气氛烧成后试样的断裂韧性与抗弯强度分别达到9.70 MPa·m~(1/2)与179.5 MPa。随频率的增加,不同烧结气氛制备的MoSi_2/Al_2O_3复合材料的介电常数和介电损耗均降低;随着烧结气氛从空气、真空、Ar气的变化,复合材料介电常数的实部和虚部均增加。  相似文献   

5.
本文采用化学气相渗透法(CVI)在三维氧化铝纤维预制体上沉积热解碳(PyC)界面层,通过溶胶-凝胶法制备氧化铝纤维/PyC/氧化铝基体复合材料和无界面复合材料。通过三点弯曲实验分析其力学性能,扫描电子显微镜观察其断口微观结构。结果表明,当热解碳界面层厚度分别为0.6μm和0.8μm时,复合材料所对应的弯曲强度分别为231.3 MPa和158.2 MPa,与无界面复合材料弯曲强度55.8 MPa相比,力学性能分别提高314.5%和183.5%。通过微观结构分析发现利用热解碳界面可充分发挥连续纤维拨出、界面脱粘和裂纹偏转等增韧机制,实现材料脆韧转变。  相似文献   

6.
竹材制备SiC多孔陶瓷及吸波性能研究   总被引:1,自引:0,他引:1  
以印度竹和竹炭粉为原料,采用溶胶凝胶法和液态渗硅法制备生物基SiC陶瓷块和陶瓷粉,并通过磁性金属担载制备了吸波材料。借助XRD、SEM、RAM反射率测试系统对材料的物相构成、微观构造、吸波反射率进行了分析。结果表明:竹材炭化及陶瓷化后均保持了多孔的骨架结构特征。溶胶凝胶法和液态渗硅法的陶瓷化反应都发生在竹炭孔道侧壁上,且溶胶凝胶法在竹炭孔道内部有硅基陶瓷晶须生成。要提高液态渗硅法竹炭向SiC的转化率和SiC的晶化程度,可以通过提高陶瓷化温度和延长保温时间的方法来实现。无论何种方法,竹炭粉比竹炭块的陶瓷转化率高。另外通过溶胶凝胶法制备的担载磁性金属的竹基陶瓷材料在低频波段有一定的电磁波吸收性能。草刺  相似文献   

7.
用真空热压烧结法制备了Al2O3-Ti C0.5N0.5/Co-Ni复合材料,用扫描电子显微镜、能谱仪、电子万能试验机和Vickers硬度仪等测试分析了不同烧结参数对样品显微组织及力学性能的影响。结果表明:当烧结温度1 650℃,压力25 MPa,保温时间30 min时,样品的相对密度、抗弯强度(σmax)、断裂韧性(KICmax)和Vickers硬度(HV)的最大值分别达到99.6%,σmax=1 100 MPa,KICmax=10.5 MPa·m1/2和HV=23.7 GPa,样品断口形貌存在混晶断裂特征。  相似文献   

8.
以SiC和Si微米粉为添加剂,采用无压烧结工艺制备了纳米SiC增韧的Al2O3陶瓷复合材料,探讨了SiC含量、烧结气氛和烧结温度对复合材料的烧成收缩率、微观形貌、抗弯强度、维氏硬度及断裂韧性的影响。结果显示:SiC的添加使复合材料的烧成收缩率下降,惰性气氛下复合材料的收缩率要大于氧化气氛和还原气氛时的收缩率。在氧化性气氛下烧结时,当SiC添加量为4%时,复合陶瓷的体积密度为3.80 g·cm^-3,抗弯强度、断裂韧性及维氏硬度均达到最大值,分别为480 MPa、5.12 MPa·m1/2、16.2 GPa。添加SiC后所得复合材料的基体颗粒为椭圆状,粒径为2μm左右,颗粒与颗粒之间结合紧密,颗粒形状的改变可能是因为烧结机理发生变化所致。纳米SiC颗粒位于晶界处,形成了由Al2O3-SiC-Al2O3搭桥联结的晶界,提高了晶界强度,导致裂纹只能在晶内传播。  相似文献   

9.
通过添加马来酸酐接枝的聚烯烃弹性体(POE-g-MAH)及无机导热填料Al_2O_3对无规共聚聚丙烯(PP-R)进行复合改性,研究了POE-g-MAH及Al_2O_3用量对PP-R/POE-g-MAH/Al_2O_3复合材料力学性能和导热性能的影响,并分析了复合材料的结晶行为和微观形貌。结果表明:POE-g-MAH和Al_2O_3的添加,可提高PP-R材料的低温冲击强度和导热性,由此可望得到综合性能优越的PP-R管材。  相似文献   

10.
为了获得接近理论密度的多层复合材料,注浆是很有前途的工艺方法。从测定Al_2O_3和Al_2O_3/ZrO_2(4%体积ZrO_2)料浆的ξ电位和粘度角度出发,确定了用注浆法制备多层复合材料的条件。同时也报道了用扫描电子显微分析获得的微观结构。  相似文献   

11.
以介孔γ-Al2O3为载体,采用化学沉积-光还原法制备了具有表面金属等离子体效应的Ag-AgCl/Al2O3纳米复合光催化材料,用XRD对样品对材料的结构进行了表征。采用正交试验法分别研究了样品在紫外光和可见光下对甲基橙的降解效果,获得了最佳工艺条件:AgNO3∶NaCl∶Al2O3比例为2∶2∶1,紫外光还原时间为60 min,甲基橙浓度为5 mg/L。在紫外光条件下,对5 mg/L、10 mg/L和20 mg/L的甲基橙进行降解实验,降解率分别是97.46%、96.49%、95.96%。而在可见光条件下,降解率分别是98.59%、98.24%、97.1%。因此,所制备的材料具有良好的光催化性能,在可见光下效果更加理想。  相似文献   

12.
以工业级氧化铝和镁铝尖晶石为原料、石墨为造孔剂,通过干压法制备Al_2O_3–MgAl_2O_4复相多孔陶瓷支撑体。研究了原料配比、烧结温度和造孔剂含量对支撑体孔隙率、力学性能、孔径分布及耐酸碱腐蚀性的影响。结果表明:当Al_2O_3含量为90%(质量分数)、Mg Al_2O_4含量为10%、外加20%石墨时,在1 478℃烧结,制得的支撑体孔隙率为37.6%,抗弯强度为83.11 MPa,优于同等条件制备的Al_2O_3纯相支撑体的力学性能,该复相支撑体分别在80℃、10%的硫酸和氢氧化钠溶液中腐蚀24 h后,剩余抗弯强度为59.69和71.25 MPa,表明添加适量的Mg Al_2O_4,除了可以增加抗弯强度,可以提高其耐碱性能。  相似文献   

13.
以不同质量比的氧化铝和二氧化硅为原料,碳粉为造孔剂,二氧化钛以及氧化镁为烧结助剂,添加甲基纤维素为粘结剂在一定温度下制得多孔陶瓷膜支撑体,并研究了不同质量比的氧化铝和二氧化硅,烧结温度对支撑体微观结构以及收缩率、孔隙率和抗压强度的影响。结果表明,在硅铝质量比为1.0∶1.0,保温温度为1200℃时,支撑体综合性能较好:收缩率为3.61%,孔隙率为47.62%,抗压强度为23.14 MPa,此时主晶相为莫来石。  相似文献   

14.
以石墨烯(GE)和氧化铝(Al_2O_3)为导热填料,三元共聚尼龙(CO-PA)为基体,硅烷偶联剂KH-550为表面改性剂,通过溶液共混的方法制备了石墨烯/氧化铝/三元共聚尼龙导热复合材料。XRD和SEM分析表明,GE、Al_2O_3的加入改变了尼龙的结晶晶型; DSC与TGA分析表明,GE与Al_2O_3的填料体系降低了尼龙的结晶性能,同时复合材料的热稳定性得到提高;热导率测试结果表明,填料的添加使复合材料的热导率得到较为明显的提高,当Al_2O_3的添加量为50%,GE添加量8%时,复合材料的热导率提高了8. 8倍;力学测试表明,低含量的导热填料能够提高复合材料的力学性能,当Al_2O_3添加量为50%,GE含量为1%时,复合材料的屈服强度提高了62. 1%,当Al_2O_3添加量为30%时,复合材料的拉伸强度提高了21. 2%。  相似文献   

15.
在纳米Al_2O_3粒子存在的情况下,以苯胺单体为原料,过硫酸铵为氧化剂,采用化学氧化聚合法制备了聚苯胺/纳米Al_2O_3,复合物。分别用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、紫外-可见分光光度计(UV-vis)和傅里叶变换红外光谱(FTIR)对产物进行形貌观察和结构表征。将涂覆含有聚苯胺和聚苯胺/纳米Al_2O_3,复合物涂层的碳钢片,浸泡于质量分数为3.5%的NaCl溶液中,通过开路电位、极化曲线和交流阻抗来评价涂层的防腐性能。结果表明,涂层中含有聚苯胺/纳米Al_2O_3复合物的碳钢片抗腐蚀能力强于含聚苯胺的碳钢片,腐蚀电位最高,腐蚀电流密度最小;而裸钢片腐蚀电位最小,腐蚀电流密度最大。  相似文献   

16.
王志义  邓先功 《精细化工》2006,23(12):1178-1180,1185
以TiC l4、A l2(SO4)3为原料,控制n(A l2O3)/n(TiO2)=0.2,采用液相共沉淀法制备了A l2O3/TiO2纳米抗菌剂,并用DSC-TG、XRD、UV-vis等手段研究了A l2O3复合对TiO2抗菌性能的影响。结果表明,复合A l2O3后,TiO2纳米抗菌剂经900℃煅烧后完全是锐钛矿结构;950~1 050℃为良好的混晶结构,其中,经950℃煅烧后,混晶结构中锐钛矿相质量分数约占77%,平均粒径约20 nm,可见光吸收带边红移显著,光吸收阈值由纯TiO2的380 nm红移至430 nm左右,抗菌性能好,在荧光灯下对大肠杆菌和金黄色葡萄球菌的抑菌圈直径达15mm左右。  相似文献   

17.
以Si粉、竹炭为原料,采用包埋法制备具有类蜂窝结构的竹炭(bamboo carbon,BC)/SiC复合材料。结果表明:BC/SiC复合材料主要由β-SiC相、少量α-SiC相和非晶碳组成。BC/SiC复合材料呈蜂巢状多孔结构,孔内壁分布着直径不同、相互熔结连接的SiC三维聚集体结构层,其断裂韧性为18.8 MPa·m~(1/2),弯曲强度为34.5 MPa。BC/SiC复合材料形成的两相界面,提高了BC/SiC复合材料的吸波性能:介电常数实部最大值为9.14,虚部最大值为2.06;样品厚度为2.5 mm时,在10.7 GHz处,最低反射系数为–10.16 dB;反射系数–8 dB的有效吸收带宽达2.1 GHz。  相似文献   

18.
以Si粉、竹炭为原料,采用包埋法制备具有类蜂窝结构的竹炭(bamboo carbon,BC)/SiC复合材料。结果表明:BC/SiC复合材料主要由β–SiC相、少量α–SiC相和非晶碳组成。BC/SiC复合材料呈蜂巢状多孔结构,孔内壁分布着直径大小不同、相互熔结连接的SiC三维聚集体结构层,其断裂韧性为18.8 MPa·m1/2,弯曲强度为34.5 MPa。BC/SiC复合材料形成的两相界面,提高了BC/SiC复合材料的吸波性能:介电常数实部最大值为9.14,虚部最大值为2.06;样品厚度为2.5 mm时,在10.7 GHz处,最低反射系数为–10.16 dB;反射系数–8 dB的有效吸收带宽达2.1 GHz。  相似文献   

19.
以Si粉、竹炭为原料,采用包埋法制备具有类蜂窝结构的竹炭(bamboo carbon,BC)/SiC复合材料。结果表明:BC/SiC复合材料主要由β–SiC相、少量α–SiC相和非晶碳组成。BC/SiC复合材料呈蜂巢状多孔结构,孔内壁分布着直径大小不同、相互熔结连接的SiC三维聚集体结构层,其断裂韧性为18.8 MPa·m1/2,弯曲强度为34.5 MPa。BC/SiC复合材料形成的两相界面,提高了BC/SiC复合材料的吸波性能:介电常数实部最大值为9.14,虚部最大值为2.06;样品厚度为2.5 mm时,在10.7 GHz处,最低反射系数为–10.16 dB;反射系数–8 dB的有效吸收带宽达2.1 GHz。  相似文献   

20.
以Si粉、竹炭为原料,采用包埋法制备具有类蜂窝结构的竹炭(bamboo carbon,BC)/SiC复合材料。结果表明:BC/SiC复合材料主要由β–SiC相、少量α–SiC相和非晶碳组成。BC/SiC复合材料呈蜂巢状多孔结构,孔内壁分布着直径大小不同、相互熔结连接的SiC三维聚集体结构层,其断裂韧性为18.8 MPa·m1/2,弯曲强度为34.5 MPa。BC/SiC复合材料形成的两相界面,提高了BC/SiC复合材料的吸波性能:介电常数实部最大值为9.14,虚部最大值为2.06;样品厚度为2.5 mm时,在10.7 GHz处,最低反射系数为–10.16 dB;反射系数–8 dB的有效吸收带宽达2.1 GHz。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号