首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过一种全新的固相法合成尖晶石LiMn_2O_4,先制得Mn_3O_4,再由制得的Mn_3O_4和LiCO_3合成LiMn_2O_4正极材料。对由此方法得到的尖晶石LiMn_2O_4的结构和电化学性能进行了研究。通过X射线衍射仪(XRD)和电子扫描电镜(SEM)分析表明,所制材料为纯相尖晶石LiMn_2O_4,颗粒均匀,无杂质相;通过电化学性能测试表明,该尖晶石LiMn_2O_4具有良好的电化学性能:首次充放电比容量为120.7mAh/g(0.5C,3.5~4.3V),经过100次充放电循环后,放电比容量为118mAh/g,容量保持率为97.8%。  相似文献   

2.
通过固相法制备出锂离子电池正极材料LiMn_2O_4和LiMn_(1.95)Mg_(0.05)O_(3.9)F_(0.1)样品,并通过XRD、SEM、EDS、充放电测试、CV和EIS对其结构、形貌以及电化学性能进行了研究。结果发现,适量Mg、F的掺杂未改变LiMn_2O_4的尖晶石结构。在0.2C倍率下,样品LiMn_2O_4和LiMn_(1.95)Mg_(0.05)O_(3.9)F_(0.1)的首次放电比容量分别为121.3mAh/g和123.7mAh/g,循环60次后,容量保持率分别为82.1%和91.4%。在5C倍率下,样品LiMn_(1.95)Mg_(0.05)O_(3.9)F_(0.1)的放电比容量为92.4mAh/g,而LiMn_2O_4的放电比容量仅为76.5mAh/g。Mg、F的共同掺杂,可以有效抑制锰酸锂晶体中JahnTeller效应导致的结构畸变,稳定尖晶石结构,明显改善其循环稳定性和倍率性能,并提高材料的初始放电比容量。  相似文献   

3.
为了抑制Jahn-Teller效应导致的结构畸变对锂离子电池正极材料LiMn_2O_4结构的影响,通过溶胶-凝胶法成功制备出了尖晶石LiMn_2O_4和镁离子掺杂的LiMg_(0.1)Mn_(1.9)O_4样品。并用X射线衍射、扫描电镜、充放电测试、X射线能谱、循环伏安对样品结构、形貌和电化学性能进行研究,发现适量的镁离子掺杂未改变LiMn_2O_4的结构。在0.5C倍率下,LiMg_(0.1)Mn_(1.9)O_4样品的首次放电比容量稍有降低,但循环100次后,容量保持率高达93.8%,远高于未掺杂镁样品的容量保持率(75.8%);在5C倍率下,LiMg_(0.1)Mn_(1.9)O_4的放电比容量高达91mAh/g,而未掺杂的样品仅为72.9mAh/g。结果表明:镁离子掺杂可以有效抑制Jahn-Teller畸变,改善LiMn_2O_4的电化学性能。  相似文献   

4.
通过溶胶-凝胶法合成了高电压LiNi_(0.5-x)Mn_(1.5)Fe_xO_4(0≤x≤0.2)尖晶石锂离子电池正极材料。采用X射线衍射仪(XRD)和恒电流充放电测试来研究样品的结构和电化学性质。结果表明,在LiNi_(0.5)Mn_(1.5)O_4样品中掺Fe可以提高样品的结构稳定性,从而改善其循环性能。电化学测试结果表明,LiNi_(0.35)Mn_(1.5)Fe_(0.15)O_4具有最佳循环稳定性,并且在0.2C倍率下,初始放电比容量达136.8mAh/g,循环50次后容量保持率为98.7%。  相似文献   

5.
掺杂钴对尖晶石型锂锰氧晶体结构及电化学性能的影响   总被引:3,自引:1,他引:2  
用高温固相法合成了尖晶石型LiMn_2O_4和富锂型Li_(1+x)Mn_(2-x)O_4及掺杂Co尖晶石型LiMn_(2-x)Co_yO_4材料,对材料进行了电化学性能,晶格参数及X射线的研究。实验表明,Co的掺入,样品形成了填隙型化合物,其掺杂量对样品的晶体结构及电化学性能有较大的影响。当掺量达0.15时,样品的首次放电容量达129.0mAh·g~(-1),同时充放寿命大有改善。  相似文献   

6.
通过固相反应,以四氧化三锰(Mn_3O_4)中间体为锰源制备出锰酸锂(LiMn_2O_4)和氟、铝共掺杂的锰酸锂(LiMn_(1.9)Al_(0.1)O_(3.9)F_(0.1))锂离子电池正极材料。以XRD、SEM、充放电测试和循环伏安(CV)测试对其结构、形貌以及电化学性能进行了研究。结果表明,适量的铝(Al)、氟(F)掺杂未改变LiMn_2O_4的尖晶石结构。在0.2C倍率下,样品LiMn_2O_4和LiMn_(1.9)Al_(0.1)O_(3.9)F_(0.1)的首次放电比容量分别为120.1mAh/g和123.0mAh/g,循环100次后,容量保持率分别为75.27%和87.40%,样品LiMn_(1.9)Al_(0.1)O_(3.9)F_(0.1)表现出更好的循环稳定性。在5C倍率下,LiMn_(1.9)Al_(0.1)O_(3.9)F_(0.1)的放电比容量为90.0mAh/g,而LiMn_2O_4的放电比容量仅为71.4mAh/g。结果表明,铝(Al)、氟(F)共同掺杂在抑制Jahn-Teller畸变的基础上,进一步提高了LiMn_2O_4的放电比容量,明显改善了材料的循环稳定性和倍率性能。  相似文献   

7.
尖晶石结构的镍锰酸锂(LiNi_(0.5)Mn_(1.5)O_4)具有三维扩散通道,有利于锂离子的传输且结构稳定,具有高的能量密度与功率密度,是未来最具实用价值的功率型锂离子电池正极材料之一。其中倍率是评价锂离子电池功率性能的重要标准。综述了形貌控制、体相掺杂、表面包覆等多种提升LiNi_(0.5)Mn_(1.5)O_4倍率性能的方法,阐述了不同方法在改善锂离子电池电化学性能方面的作用,并指出高功率型LiNi_(0.5)Mn_(1.5)O_4正极材料目前需要解决的问题和研究方向。  相似文献   

8.
采用水热法合成由细长棒状结构组成的刺球形二氧化锰(MnO_2)。然后以MnO_2为前驱体,采用两步烧结方式合成球形形貌的锰酸锂(LiMn_2O_4)和锰酸铁氟锂(LiFe_(0.06)Mn_(1.94)O_(3.88)F_(0.12)),通过扫描电镜(SEM)对MnO_2进行了形貌分析,通过SEM、X射线衍射分析(XRD)、循环伏安测试(CV)和充放电测试对LiMn_2O_4和LiFe_(0.06)Mn_(1.94)O_(3.88)F_(0.12)进行了表征。结果表明铁(Fe)、氟(F)复合掺杂的LiFe_(0.06)Mn_(1.94)O_(3.88)F_(0.12)材料具备规整的形貌、更稳定的晶体结构、良好的循环性能和倍率性能。在0.2C时,LiFe_(0.06)Mn_(1.94)O_(3.88)F_(0.12)材料的首次放电比容量为131.8mAh/g,电化学性能较好,而LiMn_2O_4仅为124.6mAh/g。在0.5C倍率下,LiFe_(0.06)Mn_(1.94)O_(3.88)F_(0.12)的首次放电比容量为121.6mAh/g,而LiMn_2O_4仅为117.7mAh/g,循环80次后,容量保持率分别为83.06%和77.57%。  相似文献   

9.
通过X射线衍射、扫描电镜、恒流充放电、循环伏安和阻抗(EIS)等技术对材料的形貌和电化学性能进行分析,研究了Mg、Al同时掺杂对溶胶-凝胶法合成单斜晶型Li_3V_2(PO_4)_3/C材料电化学性能的影响。结果表明:相对纯的磷酸钒锂/C(LVP/C),少量的掺杂没有影响材料的结构,电化学性能有显著提升,并且Li_(2.9)Mg_(0.05)V_(1.9)Al_(0.1)(PO_4)_3/C材料具有最好的电化学性能。在室温3~4.3V充放电平台下,以0.1C首次放电比容量达到130.7mAh/g,第50次循环的放电比容量仍有127.2mAh/g,容量保持率为97.3%。  相似文献   

10.
制备了4.6V高截至电压下具有良好循环表现的AlF_3包覆改性LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料,通过XRD、SEM、交流阻抗(IMP)分析、充放电测试研究了不同用量AlF_3包覆LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料的结构与电化学性能.结果表明,AlF_3以非晶态形式包覆于LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2材料颗粒的表面.当包覆量<1.0%(摩尔分数,下同)时,AlF_3包覆导致轻微的初始容量损失,但显著抑制了高充电电压下膜阻抗和电荷传递阻抗的增加,较好改善了LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2材料的循环稳定性;当包覆量达到2.0%以上时,因AlF_3无电化学活性,使得初始容量损失过大.综合各方面表现,0.5%AlF_3包覆样品的电化学性能较佳,2.5~4.6V范围0.5C放电容量为182.2mAh·g~(-1),循环30次后容量保持率达88.1%.  相似文献   

11.
使用MnO_2对尖晶石型LiMn_2O_4材料进行了包覆改性研究,以简单的工艺流程合成了MnO_2包覆的LiMn_2O_4材料,具有一定的商业价值,此外对合成的材料进行了XRD、SEM以及电化学性能测试,结果表明MnO_2的包覆能够很好地抑制尖晶石型LiMn_2O_4材料在充放电过程中由于因Mn溶解所造成的容量衰减问题,同时高温下(55℃)在50个循环后,其容量保持率达到了94.2%,循环性能优异,此外对其进行了EIS测试,结果显示MnO_2的包覆能够有效地降低材料的电荷转移阻抗.  相似文献   

12.
为有效提高V_6O_(13)正极材料在高锂状态下的放电比容量和改善循环性能,使用一种先制备前驱体再水热合成的方法制备铁掺杂V_6O_(13)。运用XRD,SEM和XPS表征铁掺杂V_6O_(13)的物相、形貌以及表面元素价态,并对铁掺杂V_6O_(13)的电化学性能进行研究与分析。掺杂不同数量的铁可以得到不同形貌且电化学性能各异的铁掺杂V_6O_(13)。其中0.02样品的有序堆垛纳米片的厚度最大(600~900nm),纳米片之间的空隙最大。铁掺杂V_6O_(13)样品的放电性能均好于纯V_6O_(13),其中0.02样品的电化学性能最好,首次放电比容量为433mAh·g-1,100次循环后的容量保存率为47.1%。  相似文献   

13.
尖晶石5V正极材料LiNi_(0.5)Mn_(1.5)O_4的形貌结构与其电化学性能有着密切的联系,正极材料颗粒尺寸的大小与形状严重影响着正极材料的电化学性能。通过综述其不同形貌的合成方法以及阐明正极材料LiNi_(0.5)Mn_(1.5)O_4与其电化学性能的关系,且简单介绍一些其它的改性方法。  相似文献   

14.
LiCoxNixMn2-2xO4-xFx(x=0.05、0.10)的合成与性能研究   总被引:3,自引:0,他引:3  
采用混合溶剂共沉淀法,通过掺杂Co和Ni双阳离子,同时引入F^-阴离子对LiMn2O4尖晶石进行多元掺杂,合成了LiCoχNiχMn2-2χO4-xFχ(χ=0.05、0.10)。XRD分析表明掺杂后LiMn2O4尖晶石正极材料仍保持尖晶石结构。电化学性能测试表明多掺杂尖晶石具有很好的循环性。其中,在3.2~4.4V电压范围内,以电流密度100mA/g的条件下正极材料LiCo0.05Ni0.05Mn1.9O3.95F0.05的初始容量为83.04mAh/g,30次循环中平均每次循环比容量损失约0.18%。电化学测试表明,多元掺杂可以有效改善充放电平台。  相似文献   

15.
姚经文  吴锋 《材料导报》2007,21(6):144-145,148
采用高温固相分段反应法制备了尖晶石LiMn2O4和Mg2 掺杂的Li1-xMgxMn2O4(x=0.05、0.1)材料,对材料进行了XRD结构分析和电化学性能等测试,结果表明:Mg2 掺杂样品Li1-xMgxMn2O4(x=0.05、0.1)仍保持尖晶石相Fd3m结构;循环性能明显改善,室温条件下50次循环后,样品Li0.9Mg0.1Mn2O4的放电容量为100mAh/g,容量保持率为9.9%,而LiMn204容量衰减率仅为18.1%.  相似文献   

16.
采用高温固相合成法制备富锂锰基正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54-x)Zn_xO_2(x=0,0.03,0.06,0.10),Zn~(2+)掺杂对Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2的表面特性和电化学性能都有影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、拉曼光谱分析、充放电测试、倍率特性测试、循环性能测试,分析了该合成材料的晶体结构、形貌特征、微观结构和电化学性能。富锂锰基正极材料为a-NaFeO_2层状结构,R-3m空间群,结晶度高,结构稳定性好,其中Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.48)Zn_(0.06)O_2的电化学性能较好。掺杂Zn~(2+)可以提高富锂锰基正极材料的充放电比容量、倍率性能、循环性能等电化学性能。  相似文献   

17.
为改善锂离子电池正极材料LiMn2O4的电化学循环性能,以乙酸锂、乙酸锰和乙酸锌为原料,采用固相法制备了LiMn2-xZnxO4(x=0.02、0.04、0.06),并与未掺杂的LiMn2O4进行性能比较。X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明所制备的LiMn2-xZnxO4具有与LiMn2O4同样的尖晶石结构,锌的掺入细化了尖晶石颗粒,增强了Li+在固相中的扩散能力。电化学测试结果显示锌掺杂能抑制LiMn2O4的电化学容量衰减现象,使其循环性能得到显著提高。其中LiMn1.96Zn0.04O4表现出最佳的循环性能,循环20次后放电容量可保持在106.6mAh/g。  相似文献   

18.
采用沉淀法对镍钴猛锂正极材料(LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2)分别以氧化钇(Y_2O_3)、磷酸钇(YPO_4)、氧化铝(Al_2O_3)和磷酸铝(AlPO_4)行了表面包覆。采用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、电化学交流阻抗谱(EIS)及恒流充放电等方法表征了材料的结构、形貌及电化学性能。结果表明,包覆剂没有改变材料的晶体结构,可以均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料表面,并且显著提高了材料的电化学性能。在2.5~4.5V电压范围和20mA/g电流密度下,包覆0.5%AlPO_4的材料首次放电容量为198.6mAh/g,50次循环后材料的放电容量保持到196.1mAh/g,而包覆Y_2O_3、YPO_4、Al_2O_3的材料其电化学性能均低于AlPO_4包覆材料。  相似文献   

19.
采用固相法合成了锂镍钴锰氧化物(LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2)正极材料,探究了不同预烧温度对材料结构及电化学性能的影响。通过X射线衍射(XRD)、扫面电镜(SEM)和电化学测试对合成样品进行表征分析。结果表明,当预烧温度为300~700℃时,合成的正极材料均无杂相;预烧温度为400℃时,合成的正极材料具有良好的电化学性能,在0.2C倍率下首次放电比容量为197.4mAh/g,经过30次循环后容量保持率为92.9%。  相似文献   

20.
采用尖晶石锰铁氧体材料(MnFe_2O_4)和氧化石墨烯(GO),通过水热法成功制得尖晶石锰铁氧体复合材料(MnFe_2O_4@RGO),并对制得的MnFe_2O_4@RGO进行SEM、XRD和电化学测试。实验结果表明:在EG∶DEG的体积配合比为20∶0条件下,制得的MnFe_2O_4@RGO电化学信号最强,循环伏安氧化峰电流强度最高可达到93μA,具有良好的电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号