首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究具有外界持续扰动的时滞非线性大系统的无静差最优跟踪控制问题.将时滞非线性大系统分解为带有互联项的N个时滞非线性子系统,基于内模原理对子系统构造扰动补偿器,将带有外部持续扰动的子系统化为无扰动的增广系统.通过灵敏度法求解不含时滞的两点边值问题,得到子系统的最优跟踪控制律,截取最优跟踪控制律的前N项作为次优控制律来近似系统的最优控制律.仿真实例表明了该设计方法的有效性.  相似文献   

2.
Finite-time formation control for multi-agent systems   总被引:5,自引:0,他引:5  
Feng  Long  Jie  Yanping   《Automatica》2009,45(11):2605-2611
In this paper, we develop a new finite-time formation control framework for multi-agent systems with a large population of members. In this framework, we divide the formation information into two independent parts, namely, the global information and the local information. The global formation information decides the geometric pattern of the desired formation. Furthermore, it is assumed that only a small number of agents, which are responsible for the navigation of the whole team, can obtain the global formation information, and the other agents regulate their positions by the local information in a distributed manner. This approach can greatly reduce the data exchange and can easily realize various kinds of complex formations. As a theoretical preparation, we first propose a class of nonlinear consensus protocols, which ensures that the related states of all agents will reach an agreement in a finite time under suitable conditions. And then we apply these consensus protocols to the formation control, including time-invariant formation, time-varying formation and trajectory tracking, respectively. It is shown that all agents will maintain the expected formation in a finite time. Finally, several simulations are worked out to illustrate the effectiveness of our theoretical results.  相似文献   

3.
Distributed learning and cooperative control for multi-agent systems   总被引:1,自引:0,他引:1  
This paper presents an algorithm and analysis of distributed learning and cooperative control for a multi-agent system so that a global goal of the overall system can be achieved by locally acting agents. We consider a resource-constrained multi-agent system, in which each agent has limited capabilities in terms of sensing, computation, and communication. The proposed algorithm is executed by each agent independently to estimate an unknown field of interest from noisy measurements and to coordinate multiple agents in a distributed manner to discover peaks of the unknown field. Each mobile agent maintains its own local estimate of the field and updates the estimate using collective measurements from itself and nearby agents. Each agent then moves towards peaks of the field using the gradient of its estimated field while avoiding collision and maintaining communication connectivity. The proposed algorithm is based on a recursive spatial estimation of an unknown field. We show that the closed-loop dynamics of the proposed multi-agent system can be transformed into a form of a stochastic approximation algorithm and prove its convergence using Ljung’s ordinary differential equation (ODE) approach. We also present extensive simulation results supporting our theoretical results.  相似文献   

4.
Sophisticated agents operating in open environments must make decisions that efficiently trade off the use of their limited resources between dynamic deliberative actions and domain actions. This is the meta-level control problem for agents operating in resource-bounded multi-agent environments. Control activities involve decisions on when to invoke and the amount to effort to put into scheduling and coordination of domain activities. The focus of this paper is how to make effective meta-level control decisions. We show that meta-level control with bounded computational overhead allows complex agents to solve problems more efficiently than current approaches in dynamic open multi-agent environments. The meta-level control approach that we present is based on the decision-theoretic use of an abstract representation of the agent state. This abstraction concisely captures critical information necessary for decision making while bounding the cost of meta-level control and is appropriate for use in automatically learning the meta-level control policies.  相似文献   

5.
A multi-agent based agile manufacturing planning and control system   总被引:2,自引:0,他引:2  
In today’s manufacturing enterprise, the performance of customer service level (e.g., short ordering-to-delivery time, low price) is highly dependent on the effectiveness of its manufacturing planning and control system (MPCS). However, most of the current MPCS, employed the hierarchical planning approach, may have some drawbacks, such as structural rigidity, difficulty of designing a control system, and lack of flexibility. Currently, RFID (Radio Frequency Identification) technology has been applied to enhance the visibility, accountability, track ability and traceability of manufacturing system whenever the accurate and detailed manufacturing information (e.g., raw material, WIP, products in factory and products in the down streams) of products will be followed in real-time basis by RFID technique. In addition, a multi-agent approach may be applied in a distributed and autonomous system which allows negotiation-based decision making. Therefore, the objective of this research is to study the application of RFID technique and multi-agent system (MAS) in developing an agent-based agile manufacturing planning and control system (AMPCS) to respond to the dynamically changing manufacturing activities and exceptions.In AMPCS, RFID-based manufacturing control (R-MC) module plays the role of controlling the manufacturing system in which production items and manufacturing resources attached with RFID tag may actively feedback production status to and receive production and operations schedule from advanced manufacturing planning (AMP) module. In addition, a bidding process and algorithm is developed to generate operations schedule by using the characteristics of MAS. Performance analysis (PA) module is responsible not only for evaluating the scheduling results but also for evaluating the performance of production execution. The development of an AMPCS for an automated manufacturing cell demonstrates that the integration of RFID technique and MAS in developing an agile manufacturing planning and control system can really possess the characteristics of visibility, accountability, track ability, responsiveness, and flexibility in a distributed and dynamic manufacturing system.  相似文献   

6.
This paper is concerned with the event-triggered containment control for stochastic multi-agent systems subject to packet dropouts. The adopted event-triggered protocol is with absolutely triggered conditions catering for the requirement of real-time to an extreme. In light of such a protocol, a novel definition of containment control in mean-square sense, named as χ-containment, is proposed to better describe the tracking dynamics of followers. Based on relative measurement outputs, the purpose of this paper is to design an output-feedback controller such that all followers converge into the convex hull spanned by leaders. First, with the help of the property of the Laplacian matrix, the containment control problem is transformed to an easily setting step by step. Then, sufficient conditions with the form of matrix inequalities are derived to guarantee the desired χ-containment which depends on the initial values and the event-triggered thresholds. By introducing a free matrix combined with an orthogonal basis of the null space of control matrix, the controller gain can be obtained by solving a set of linear matrix inequalities. Finally, a simulation example is given to verify the effectiveness of the designed control protocol.  相似文献   

7.
This paper considers the containment control problem for second-order multi-agent systems with time-varying delays. Both the containment control problem with multiple stationary leaders and the problem with multiple dynamic leaders are investigated. Sufficient conditions on the communication digraph, the feedback gains, and the allowed upper bound of the delays to ensure containment control are given. In the case that the leaders are stationary, the Lyapunov–Razumikhin function method is used. In the case that the leaders are dynamic, the Lyapunov–Krasovskii functional method and the linear matrix inequality (LMI) method are jointly used. A novel discretized Lyapunov functional method is introduced to utilize the upper bound of the derivative of the delays no matter how large it is, which leads to a better result on the allowed upper bound of the delays to ensure containment control. Finally, numerical simulations are provided to illustrate the effectiveness of the obtained theoretical results.  相似文献   

8.
9.
10.
ABSTRACT

This paper concerns on the bearing-based leader–follower formation manoeuvre control problem for two- (2D) and three-dimensional (3D) multi-agent systems with nonholonomic constraint. The target formation is defined by relative-bearing measurements, which, for example, can be obtained from onboard cameras. The contributions of this paper are twofold. Firstly, a distributed formation manoeuvre control law is proposed for 2D nonholonomic agents according to the inter-bearing measurement. The multi-agent systems can achieve the desired formation which is defined by the bearings information. The formation manoeuvre can be achieved by steering at least two leaders. Secondly, the control law is nontrivially extended to 3D nonholonomic multi-agents systems. The leader–follower formation tracking problem can also be solved by the proposed proportional-integral control scheme. Simulation results for 2D and 3D nonholonomic multi-agents systems are presented. Experiments that used ground mobile robots verify the effectiveness of the proposed control laws.  相似文献   

11.
This paper considers the problem of deciding multi-period investments for maintenance and upgrade of electrical energy distribution networks. After describing the network as a constrained hybrid dynamical system, optimal control theory is applied to optimize profit under a complex incentive/penalty mechanism imposed by public authorities. The dynamics of the system and the cost function are translated into a mixed integer optimization model, whose solution gives the optimal investment policy over the multi-period horizon. While for a reduced-size test problem the pure mixed-integer approach provides the best optimal control policy, for real-life large-scale scenarios a heuristic solution is also introduced. Finally, the uncertainty associated with the dynamical model of the network is taken care of by adopting ideas from stochastic programming.  相似文献   

12.
This paper studies the containment control of general linear multi-agent systems with or without time delay. The observer-based event-triggered control schemes will be considered. For the conventional distributed containment control protocol, we will not update the relative state continuously, i.e. the relative state will be updated by some events which happen intermittently. A completely decentralised event trigger will be designed for leader–follower systems. Under the proposed protocol, if we design some appropriate feedback gain matrices, all followers will asymptotically converge to the convex hull spanned by the dynamic leaders. Numerical simulations are also provided and the results show highly consistent with the theoretical results.  相似文献   

13.
This paper considers the distributed consensus problem of linear multi-agent systems subject to different matching uncertainties for both the cases without and with a leader of bounded unknown control input. Due to the existence of nonidentical uncertainties, the multi-agent systems discussed in this paper are essentially heterogeneous. For the case where the communication graph is undirected and connected, based on the local state information of neighboring agents, a fully distributed continuous adaptive consensus protocol is designed, under which the consensus error is uniformly ultimately bounded and exponentially converges to a small adjustable bounded set. For the case where there exists a leader whose control input is unknown and bounded, a distributed adaptive consensus protocol is proposed to ensure the boundedness of the consensus error. A sufficient condition for the existence of the proposed protocols is that each agent is stabilizable.  相似文献   

14.
In this paper a novel problem of adaptive awareness coverage is formulated. We model the mission domain using a density function which characterizes the importance of each point and is unknown beforehand. The desired awareness coverage level over the mission domain is defined as a non-decreasing differentiable function of the density distribution. A decentralized adaptive control strategy is developed to accomplish the awareness coverage task and learning task simultaneously. The proposed control law is memoryless and can guarantee the achievement of satisfactory awareness coverage of the mission domain in finite time with the approximation error of the density function converging to zero.  相似文献   

15.
The spectral properties of the incidence matrix of the communication graph are exploited to provide solutions to two multi-agent control problems. In particular, we consider the problem of state agreement with quantized communication and the problem of distance-based formation control. In both cases, stabilizing control laws are provided when the communication graph is a tree. It is shown how the relation between tree graphs and the null space of the corresponding incidence matrix encode fundamental properties for these two multi-agent control problems.  相似文献   

16.
Optimal semistable control for continuous-time linear systems   总被引:1,自引:0,他引:1  
In this paper, we develop a new H2 semistability theory for linear dynamical systems. Specifically, necessary and sufficient conditions based on the new notion of weak semiobservability for the existence of solutions to the semistable Lyapunov equation are derived. Unlike the standard H2 optimal control problem, a complicating feature of the H2 optimal semistable control problem is that the semistable Lyapunov equation can admit multiple solutions. We characterize all the solutions using matrix analysis tools. With this theory, we present a new framework to design H2 optimal semistable controllers for linear coupled systems by converting the original optimal control problem into a convex optimization problem.  相似文献   

17.
The systematic flatness-based motion planning using formal power series and suitable summability methods is considered for the finite-time deployment of multi-agent systems into planar formation profiles along predefined spatial–temporal paths. Thereby, a distributed-parameter setting is proposed, where the collective leader–follower agent dynamics is modeled by two boundary controlled nonlinear time-varying PDEs governing the motion of an agent continuum in the plane. The discretization of the PDE model directly induces a decentralized communication and interconnection structure for the multi-agent system, which is required to achieve the desired spatial–temporal paths and deployment formations.  相似文献   

18.
This paper addresses multi agent system (MAS) environments from an application perspective. It presents a structured view on environment-centric MAS applications. This comprises three base configurations, which MAS applications may apply directly or combine into a composite configuration. For each configuration, the paper presents key issues, requirements and opportunities (e.g. time management issues, real-world augmentation opportunities and state snapshot requirements). Thus, the paper delineates what environment technology may implement to serve MAS applications. Sample applications illustrate the configurations. Next, electronic institutions provide an example of an environment technology, addressing norms and laws in an agent society, already achieving some maturity. In comparison, application-domain specific environment technologies still are in embryonic stages.  相似文献   

19.
The optimal control problem for a bilinear distributed parameter system subject to a quadratic cost functional is solved. It is shown that the optimal control is given by a convergent power series in the state with tensor coefficients.  相似文献   

20.
This paper considers the distributed adaptive consensus problem for linear multi-agent systems with quantised relative information. By using a lemma in algebraic graph theory and introducing a projection operator in adaptive law, a novel distributed adaptive state feedback controller is designed with quantised relative state information. It is shown that the practical consensus for multi-agent systems with a uniform quantiser is achieved via the Lyapunov theory and the non-smooth analysis. In contrast with the existing quantised controllers, which rely on the minimum nonzero eigenvalue of the Laplacian matrix, the developed controller is only dependent on the number of nodes. Furthermore, a dynamic output feedback controller based on quantised relative output information is proposed. Finally, a simulation example is given to illustrate the effectiveness of the proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号