首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以戊二醛为交联剂,制备了黄原胶/聚乙烯醇(XG/PVA)互穿聚合物网络水凝胶,并研究了其吸水率、力学性能和电刺激响应行为。结果表明,在NaCl溶液中,该水凝胶的平衡溶胀比随NaCl溶液离子强度增大而减小,随pH值的增大而增大,当pH≥7时基本保持不变;经离子强度为0.01 mol/L NaCl溶液充分溶胀的XG/PVA互穿聚合物网络水凝胶其弹性模量为0.9844 MPa,拉伸强度为1.5691 MPa,断裂伸长率为1.60;在非接触的直流电场作用下,于NaCl溶液中,该水凝胶发生弯曲,凝胶的弯曲速度和弯曲偏转程度随外加电场的增加而增大;NaCl溶液离子强度对凝胶弯曲行为产生影响,当溶液离子强度I≤0.05时,凝胶向电场负极弯曲,当溶液离子强度I≥0.05时凝胶向电场正极弯曲;在循环电场作用下,其弯曲响应行为具有良好的可逆性。  相似文献   

2.
以戊二醛为交联剂,制备了黄原胶/聚乙烯醇(XG/PVA)互穿聚合物网络水凝胶,并研究了其吸水率、力学性能和电刺激响应行为。结果表明,在NaCl溶液中,该水凝胶的平衡溶胀比随NaCl溶液离子强度增大而减小,随pH值的增大而增大,当pH≥7时基本保持不变;经离子强度为0.01 mol/L NaCl溶液充分溶胀的XG/PVA互穿聚合物网络水凝胶其弹性模量为0.9844 MPa,拉伸强度为1.5691 MPa,断裂伸长率为1.60;在非接触的直流电场作用下,于NaCl溶液中,该水凝胶发生弯曲,凝胶的弯曲速度和弯曲偏转程度随外加电场的增加而增大;NaCl溶液离子强度对凝胶弯曲行为产生影响,当溶液离子强度I≤0.05时,凝胶向电场负极弯曲,当溶液离子强度I≥0.05时凝胶向电场正极弯曲;在循环电场作用下,其弯曲响应行为具有良好的可逆性。  相似文献   

3.
将β-环糊精用环氧氯丙烷交联制成水凝胶,然后用浓硫酸改性引入-SO3H基团,制备了一种电响应性β-环糊精水凝胶,研究了该凝胶的溶胀性能和电刺激响应行为。结果表明,该凝胶在Na2SO4溶液中其平衡溶胀率随Na2SO4离子强度的增大而减小。在Na2SO4溶液中于非接触直流电场作用下,该凝胶向电场负极弯曲,弯曲速度和应变随外加电压的增大而增大,并随Na2SO4离子强度的增大于0.05处出现最大值。但该水凝胶的电响应行为不受外界溶液pH的影响。在循环电场作用下,其电刺激响应行为具有良好的可逆性。  相似文献   

4.
采用二步法,以锂藻土(Laponite)交联聚丙烯酰胺(PAM),N,N-亚甲基双丙烯酰胺(BIS)交联聚丙烯酸(PAA),通过自由基聚合制备了PAM/PAA双网络水凝胶。该水凝胶的拉伸强度可达137 k Pa,在酸性缓冲液中收缩,碱性缓冲液中溶胀,具有灵敏的pH响应性。通过调节丙烯酸(AA)单体的中和度和2种网络交联剂的用量及单体配比,可控制双网络水凝胶的拉伸性能和响应性能。结果表明,AA中和度为125%,m(AM)∶m(Laponite)=1∶0.6,m(AA)∶m(BIS)=1∶0.0002,m(AM)∶m(AA)=7∶1时,水凝胶的拉伸强度最佳,可达137 k Pa;该条件下制备的双网络水凝胶同时具有灵敏可逆的pH响应性,在pH=3的缓冲液中溶胀度达5.26,在pH=7的缓冲液中溶胀度可达16.98。  相似文献   

5.
通过将壳聚糖季铵盐化改性并交联制备了一种新型阳离子化壳聚糖水凝胶,研究了凝胶的溶胀性能和电刺激响应行为。结果表明,该凝胶在NaCl溶液中其平衡溶胀率随NaCl离子强度的增大而减小。在NaCl溶液中于非接触直流电场作用下,该凝胶向电场正极弯曲,弯曲速度和应变随外加电压的增大而增大,并随NaCl离子强度的增大到0.15处出...  相似文献   

6.
壳聚糖接枝丙烯酸/丙烯酰胺水凝胶的制备及性能   总被引:4,自引:0,他引:4  
以丙烯酸(AA)、丙烯酰胺(AM)两种单体同时对壳聚糖(CTS)进行接枝改性,合成了具有环境响应性的壳聚糖水凝胶,讨论了各合成因素对凝胶溶胀性能的影响及凝胶对pH值、离子强度和温度的响应性。结果表明,当反应时间为2h~2.5 h、单体与CTS质量比为8∶1、反应温度在60℃左右、引发剂用量为0.35%(占单体和CTS总量的百分比,下同)、交联剂用量为0.125%时,制得的水凝胶最高溶胀度可达224 g/g,而且该凝胶同时具有pH值、离子强度和温度敏感性。  相似文献   

7.
PAA-Na/PVA半互穿网络水凝胶的离子强度及pH敏感性   总被引:1,自引:0,他引:1  
采用水溶液聚合法制备了聚丙烯酸钠(PAA-Na)/聚乙烯醇(PVA)半互穿网络水凝胶,研究了水凝胶在不同pH溶液、不同浓度NaCl与CaCl2溶液中的溶胀行为,结果表明,溶胀比随丙烯酸含量增大而增加,在碱性溶液中的溶胀度明显高于酸性溶液,溶胀平衡凝胶在酸性及碱性条件下均出现收缩,在pH=2和pH=12溶液中反复交换时,表现出可逆溶胀-退溶胀性能,具有较好的pH敏感性,凝胶在不同浓度NaCl与CaCl2溶液中溶胀性表明,溶液的离子强度及阳离子的电荷数对凝胶溶胀行为有较大影响。  相似文献   

8.
利用自由基聚合法合成了AMPS/AAM共聚凝胶,研究了该凝胶的溶胀性能和电响应性能,实验结果表明:凝胶的溶胀性能和电响应性能受凝胶的单体配比、溶液的离子强度和所施加的电场强度等因素的影响。  相似文献   

9.
水解聚丙烯腈/大豆分离蛋白凝胶纤维的电刺激性能   总被引:3,自引:0,他引:3  
采用水解聚丙烯腈(HPAN)和大豆分离蛋白(SPI)的共混水溶液复合得到纺丝原液,用自制纺丝设备挤到含一定量戊二醛和浓硫酸的饱和Na2SO4水溶液的凝固浴中,交联成型、拉伸干燥得到HPAN/SPI响应性水凝胶纤维,研究了电刺激性能.结果表明,在电解质溶液中非接触直流电场作用下,HPAN/SPI水凝胶纤维具有电流刺激响应性,表现为凝胶纤维弯曲现象.随着凝胶网络中-COOH含量的增加,纤维的弯曲度成阶段性增加,较高的聚丙烯腈含量使这种变化更为明显.HPAN/SPI水凝胶交联度、离子强度和pH的变化使得弯曲先增大后减少.在非直流电场的作用下,在wPAN=0.6,Na2SO4浓度为0.10 mol/L,pH=11水溶液中,电场强度为20 V时凝胶纤维的弯曲率达到极大值.该比例的HPAN/SPI凝胶纤维在Shiga凝胶弯曲理论中的Y取极大值.  相似文献   

10.
在瓜尔胶-g-聚丙烯酸钠/无机黏土(GG-g-PNaA/Clay)体系中引入疏水单体苯乙烯(St)参与接枝共聚,水溶液聚合法合成了瓜尔胶-g-聚(丙烯酸钠-co-苯乙烯)/无机黏土(GG-g-P(NaA-co-St)/Clay)复合凝胶。用红外光谱、紫外光谱和扫描电镜对复合凝胶进行了表征,考察了St与无机黏土的协同作用对凝胶三维网络和溶胀性能的影响。实验结果表明,当黏土的质量分数为10%时,随着St的加入,凝胶平衡溶胀倍率(Qeq)呈现先增大后降低趋势;当St质量分数为1.5%时,凝胶Qeq达到最大值。St与凹凸棒黏土、海泡石和蛭石协同作用,不仅使复合凝胶表面形貌粗糙度增加,孔洞增多,而且也使Qeq分别提高了48.9%、50.3%和37.5%。此复合凝胶在0.9%NaCl溶液和一定pH溶液中的Qeq也明显提高,并且经过5次溶胀-去溶胀平衡后,均表现出良好的盐和pH响应性。  相似文献   

11.
采用自由基引发聚合制备了具有pH敏感性的聚乙烯醇(PVA)/丙烯酸(AA)共聚水凝胶,研究了PVA/AA水凝胶的溶胀动力学性能,在pH2-12范围内考察了PVA/AA水凝胶的pH敏感性。在pH=7时,PVA/AA水凝胶经过大约8小时的溶胀达到溶胀平衡,平衡溶胀率达到878g/g,当pH由4变化到7或由7变化到12时,PVA/AA水凝胶溶胀行为随水溶液pH有较大变化,表现出明显的pH敏感性。  相似文献   

12.
以CaCl2为交联剂采用浸渍法制备了海藻酸钙水凝胶,研究了海藻酸钙水凝胶的溶胀吸水率及其电刺激响应行为.结果表明,在NaCl水溶液中,海藻酸钙水凝胶的平衡溶胀比随着NaCl溶液浓度的增大而增大,随着交联剂CaCl2溶液浓度的增大而减小.海藻酸钙水凝胶在NaCl水溶液中在非接触直流电场作用下向负极弯曲,其弯曲速度、弯曲偏转程度和应变随着外加电场强度的增大而增大,随着NaCl溶液离子强度的变化在离子强度I=0.03时出现临界最大值,随着交联剂CaCl2溶液浓度的增大而减小.在周期性电场作用下,海藻酸钙水凝胶的弯曲响应行为具有良好的可逆性.  相似文献   

13.
研究了聚2-丙烯酰胺-2-甲基丙磺酸钠/聚丙烯酰胺(PNaAMPS/PAAm)双网络(DN)水凝胶的溶胀性能、力学性能和摩擦性能。由于H+和OH-对水凝胶分子链构象的影响,不同pH值下DN水凝胶的溶胀度差别明显。DN水凝胶在酸性溶液中的拉伸强度比碱性中有所增强;撕裂时的破坏能在碱性溶液中明显低于酸性溶液;DN水凝胶在碱性溶液中的压缩模量比中性溶液中提高了186.3%。摩擦行为上,酸性溶液中的DN水凝胶摩擦应力值明显高于碱性溶液,随pH值的升高压力随摩擦应力的影响减弱。  相似文献   

14.
以硝酸铈铵为引发剂,将具有pH响应的聚丙烯酸(PAA)接枝到电纺纤维素(Cell)纳米纤维膜上,制备了pH响应纤维素接枝聚丙烯酸(Cell-g-PAA)纳米纤维水凝胶。研究了接枝单体丙烯酸(N)与纤维素(c)质量比对Cell-g-PAA形貌、接枝率和溶胀性的影响。结果表明:m(N)∶m(c)值从5增加到10,接枝率从11%急剧增加到28%,然后趋于平稳;而m(N)∶m(c)值从5增加到15,溶胀率从(15.2±1.6)g/g增加到(46.1±4.9)g/g,然后下降。同时,研究了pH值和离子强度对水凝胶溶胀率的影响,pH值从2.2增加到7.8时,水凝胶的溶胀率从(31.3±2.5)g/g增加到(42.7±3.2)g/g,pH值进一步增大,溶胀率降低;溶液中离子强度从0mol/L增加到0.15mol/L,水凝胶溶胀率从(36.2±2.6)g/g降低到(21.4±1.4)g/g。本研究为制备快速响应pH水凝胶提供了一种新方法。  相似文献   

15.
以具有多重响应性的新型单体4-乙酰基丙烯酰乙酸乙酯(AAEA)和N,N′-二甲基丙烯酰胺(DMAA)为原料,采用溶液自由基聚合法合成了具有多重响应性的水凝胶,研究了凝胶的溶胀行为以及在不同离子强度、温度、pH值条件下共聚水凝胶的响应性能。结果表明,随凝胶中AAEA含量的增加,凝胶的溶胀方式由Fick型转变为非Fick型;凝胶对外界离子强度、温度、pH值的变化产生响应,当NaCl浓度约为0.1mol/L时,凝胶的离子响应性出现较大的突变;随温度的升高,凝胶疏水性增大,85℃时凝胶的保水率只有60%;低pH值时,凝胶收缩,随pH值的增大,凝胶内P-AAEA部分解离加剧,静电斥力使凝胶溶胀。  相似文献   

16.
共聚物水凝胶温度及pH敏感行为的研究   总被引:1,自引:0,他引:1  
谭帼馨  崔英德 《功能材料》2004,35(4):524-526
用自由基聚合法合成了NVP/HEMA和NVP/HEMA/AAm共聚物水凝胶材料,研究了温度、pH值、离子强度等因素对凝胶溶胀性能的影响。结果表明水凝胶的溶胀度随着温度的升高而减少;水凝胶在酸性溶液中溶胀,在碱性溶液中收缩,显现出良好的pH值敏感性;水凝胶的溶胀度随着离子强度的增加而减少。  相似文献   

17.
采用自由基溶液聚合的方法,以过硫酸铵(APS)为引发剂,N,N′-亚甲基双丙烯酰胺(NNMBA)为交联剂,制备了聚丙烯酸(PAA)复合活性炭凝胶(PAA/AC)。考察了凝胶在生理盐水和不同pH值缓冲溶液中的平衡溶胀比及溶胀动力学,结果表明,活性炭能有效提高PAA凝胶的平衡溶胀比。蒸馏水中PAA/AC凝胶的平衡溶胀比可达到303(g/g),约为PAA凝胶平衡溶胀比的2.3倍;生理盐水(0.9%g/mL NaCl水溶液)中PAA/AC凝胶的平衡溶胀比可达到60(g/g),约为PAA凝胶平衡溶胀比的2.4倍;在实验设计的pH范围内PAA/AC凝胶的平衡溶胀比比PAA凝胶更高,具有更好的pH值敏感特性。  相似文献   

18.
以聚天冬氨酸(PASP)与木质纤维素(LNC)水溶液聚合法制备出的聚天冬氨酸/木质纤维素水凝胶(PASP/LNC)为吸附剂,对Pb(Ⅱ)进行吸附及脱附实验,研究溶液的初始离子浓度、pH值、吸附时间和吸附温度对溶液中Pb(Ⅱ)吸附量的影响。结果表明,溶液中Pb(Ⅱ)初始离子浓度为0.04 mol/L,溶液pH值为5.5,吸附时间为120 min,吸附温度为30℃时,PASP/LNC水凝胶对Pb(Ⅱ)的吸附量达到最大为972.35 mg/g。吸附过程符合准二级动力学模型,吸附等温线符合Langmuir模型。采用X射线衍射分析、比表面积和平均孔径分析、扫描电镜、傅里叶变换红外光谱分析PASP/LNC水凝胶的结构和吸附机理。使用HNO_3对PASP/LNC进行脱附实验。结果表明,HNO_3浓度为0.04 mol/L,脱附温度为30℃,脱附时间达到60 min时,最大脱附量为928.36 mg/g。吸附/脱附循环实验表明,PASP/LNC水凝胶重复使用4次后吸附量仍较高,是一种可重复使用的高效吸附材料。  相似文献   

19.
以戊二醛为交联剂制备了壳聚糖/果胶(CS-PT)水凝胶和壳聚糖/辛基果胶水凝胶。研究了制备条件对两种水凝胶溶胀性能的影响。实验表明,交联剂含量、pH、离子强度对CS-PT和壳聚糖/辛基果胶水凝胶溶胀度的影响较大,且在酸性条件下的水凝胶的溶胀度远大于碱性条件下的溶胀度,包埋在水凝胶中的牛血清蛋白在pH=1.0条件下载药的水凝胶释药率大于pH=7.4和pH=9.18条件下的释药率。  相似文献   

20.
以壳聚糖(CS),L-天冬氨酸(ASP)和戊二醛(GA)为原料,合成了具有pH、离子强度敏感性的壳聚糖水凝胶CS-GA-ASP.研究了交联剂含量、pH、离子强度对水凝胶溶胀率的影响和水凝胶对辅酶A的控制释放.结果表明,水凝胶在酸性溶液中,溶胀率最大,在中性溶液中溶胀率最小;水凝胶在不同pH或不同离子强度的溶液中交替放置时,表现出良好的溶胀-退胀可逆性;在室温下,pH=3.7、6.8、9的缓冲溶液中,辅酶A的累积释放率分别为78%、92%和87%,且在pH=6.8的缓冲溶液中,辅酶A释放速率最快,在pH=3.7的缓冲溶液中时,辅酶A释放速率最慢.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号