首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
粉煤灰中含有铝、铁等有价元素。在以湿法冶金工艺对其进行精细化、高值化综合利用时,实现铝、铁的有效分离是制得合格化合物的基本前堤。首先采用硫酸分解粉煤灰制得含铝、铁硫酸盐的酸浸出液,再将酸浸出液中Fe3+还原为Fe2+,然后以氨沉淀其中的铝。对铝、铁分离工艺进行了深入研究。相关研究结果证明,在优化工艺条件下,铝沉淀率达到98.59%,铁共沉淀率被控制在1.24%,铝沉淀物中TFe质量分数为0.074%,铝、铁分离效果良好。  相似文献   

2.
黄陵煤泥灰中Al2O3占19.67%,Fe2O3占7.23%,为了利用其较高的铝、铁含量,通过对煤泥灰进行煅烧活化、酸浸、聚合等过程,制备无机高分子絮凝剂聚氯化铝铁(PAFC)。正交实验表明,对铝铁浸出率影响最大的因素是煅烧温度,其次是酸浸时间,并得出最佳工艺条件为:煅烧温度800℃,煅烧时间2.5 h,盐酸浓度6 mol/L,液固比6,酸浸时间4.5 h。自制PAFC的红外光谱和扫描电镜图分析表明,产品中铝铁元素得到了很好的聚合。煤泥水絮凝实验表明,当PAFC投加量为30 mg/L,p H为6~8时,絮凝效果最好,透光率达到91.7%。  相似文献   

3.
以贵州盘县煤矸石为研究对象,为解决其工业生产提取铝铁时酸耗量大、酸利用率低及后续铝铁产品分离困难等问题,根据其矿物组成特点,本文首次采用低温中和-加压酸浸工艺对铝铁提取进行了详细研究。室温下中和最优工艺条件为20%理论酸耗、浸出时间120min、液固比3∶1(硫酸溶液与固体的质量比,以g/g计);以中和渣为原料,煤矸石理论酸耗为基础,加压酸浸最优工艺条件为浸出时间120min、浸出温度150℃、液固比3.5∶1(硫酸溶液与固体的质量比,以g/g计)。在此条件下,氧化铁浸出率为98.37%,氧化铝浸出率为95.77%,酸浸渣灰分中氧化硅质量分数为90.2%,氧化钛质量分数为9.18%。以最优工艺条件下的酸浸液循环中和新鲜煤矸石,得到的铝铁提取液中氧化铁浓度为57.95g/L,氧化铝浓度为62.20g/L。相比常规酸浸工艺具有酸耗低、酸利用率高等优点。借助X射线衍射仪(XRD)、傅里叶红外光谱仪(FTIR)和扫描电子显微镜(SEM)等分析手段,初步对两步溶出过程进行了机理分析,为煤矸石工业生产提取铝铁提供了新路线和理论支撑。  相似文献   

4.
以低值煤矸石为原料,98%硫酸作酸浸介质,采用微波加热方式提取煤矸石中酸溶物,经溶解制备酸浸液.利用煤矸石酸浸液中Fe2和Al3+、Ti4水解pH值的差异分离铝、铁、钛,制备氧化铝、氧化铁和二氧化钛产品.实验研究了煤矸石酸浸液初步分离的pH值、温度、时间对Al3+、Ti4+的水解率及铁损失的影响,并对分离液制备氧化铁红、铝钛混合物二次分离及铝、钛产品的制备工艺进行了研究,结果表明:水解最佳条件为pH =4.5、温度90℃、时间3h,水合二氧化钛洗涤pH值为1.5,此条件下获得了符合国家相关标准的氧化铝和氧化铁红产品,钛初产品二氧化钛含量达94.75%.  相似文献   

5.
针对煤化工生产过程中半焦粉煤渣存在多种杂质、阻碍其综合回收和高值化资源利用等问题,利用湿法酸碱调控沉降法工艺制备高纯度氧化铁红,研究了不同固液比、酸浸温度和时间、酸碱度以及煅烧温度和时间对回收率和纯度的影响。结果表明,酸浸过程的最佳制备条件:固液比为1∶6、硫酸浓度为3.68 mol/L、酸浸温度为160℃、酸浸保温时间为4 h;在碱式pH调控沉降体系条件下的最佳制备条件:碱源浓度为2 mol/L、pH为6.8;在煅烧过程中的最佳制备条件:煅烧温度为600℃、煅烧保温时间为2 h。在超声时间为10 min、离心转速为4 000 r/min条件下,半焦粉煤渣铁类化合物含铁质量占总质量由24.26%上升为98.12%,氧化铁红产品纯度达98.12%,回收率约为98.69%。  相似文献   

6.
用煤矸石酸浸液制备了高铝型聚合硫酸铝铁(PAFS),研究了铁铝物质的量比、p H、聚合时间、聚合温度对PAFS去浊性能的影响,获得了制备PAFS的优化工艺条件:c(Al3++Fe3+)=0.6mol/L、铁铝物质的量比为7∶10、p H为0.9、聚合时间为6 h、聚合温度为80℃、室温熟化24 h。最后对优化工艺条件下的产物进行了物相分析。  相似文献   

7.
《无机盐工业》2015,47(6):57
以高铁型煤矸石酸浸液为原料,制备了高效无机高分子絮凝剂聚合硫酸铝铁(PAFS),并通过单因素实验研究了制备体系反应条件对聚合硫酸铝铁去浊率的影响。制备聚合硫酸铝铁优化工艺条件:铁离子与铝离子总浓度为 0.5 mol/L、铁离子与铝离子物质的量比为0.25、体系pH为0.8、80 ℃聚合8 h、室温熟化24 h。采用X射线衍射(XRD)及红外光谱(IR)对优化条件下制备的聚合硫酸铝铁进行了表征,表明产物为铁聚合较完全而铝部分聚合的聚合硫酸铝铁。  相似文献   

8.
李智 《贵州化工》2006,31(3):8-11
要用川南废弃的硫铁尾矿高岭土制备彩色矿渣微晶玻璃,其关键是降低尾矿高岭土的铁含量。本实验采用了煅烧、二次酸浸工艺,进行硫铁尾矿酸浸除铁和铝试验。结果表明,浸渣的Al2O3和Fe2O3的含量分别小于6%和0.2%。摸索出制备性能优越的微晶玻璃的原料的工艺。  相似文献   

9.
研究了以锌矿提锌过程中产生的废渣为原料,采用水浸的湿法工艺,浸取液净化除杂生产硫酸锌产品;水浸渣经煅烧、脱硅制备氧化铁红的新工艺。通过实验确定的最佳工艺条件:1)硫酸锌制备工序:水浸时间为1.5 h,温度为70~80℃,液固比m(水)∶m(废渣)=0.8∶1,氧化剂双氧水的用量为10 m L/L,置换助剂锌粉的用量为2 g/L;2)氧化铁红制备工艺条件:煅烧温度为635℃,煅烧时间为1.25 h,氢氧化钠浓度为12 mol/L,碱浸温度为120℃,碱浸时间为2.0 h,在上述条件下制得的铁红产品中氧化铁质量分数为82.61%。该工艺具有资源利用充分,产品附加值高,环境污染小,工艺简单等优点。  相似文献   

10.
余海峰  王莹  徐旺生 《贵州化工》2007,32(6):12-13,49
研究了用硫酸分解硫铁矿烧渣制备可溶性硫酸盐,再由硫酸盐在一定条件下制成相关氧化铁产品的原理和方法;详细讨论了酸解反应工艺条件及影响因素,使烧渣中的氧化铁分解率达95%以上。  相似文献   

11.
针对目前铬盐生产中存在的六价铬污染问题,介绍了“铬铁-三价铬冶金化工联合法”新型无污染的铬盐生产工艺。新工艺以铬铁合金为原料,用硫酸作为浸出剂,将合金中的铬和铁浸出,浸出后的硫酸铬溶液经过硫化除杂、草酸沉铁和萃取深度除杂、沉淀氢氧化铬及煅烧,制备出氧化铬。整个工艺过程中的铬都是以三价形态存在,彻底解决了传统铬盐生产工艺中存在的六价铬污染问题。对于铬铁合金中伴生的大量铁,通过除杂可以生产电池材料磷酸铁锂的原料——草酸亚铁,实现了资源的综合回收利用,并可以产生很好的经济效益。该工艺铬的浸出率可以达到99%,生产的氧化铬纯度可以达到99%以上,而且粒度分布很好,可以用于颜料行业及冶金行业,生产流程简单,易于实现产业化。  相似文献   

12.
以白云石为原料,通过煅烧、消化、硫酸酸浸、过滤得硫酸镁溶液,采用氨水沉淀法制备氢氧化镁中间体,经煅烧得高纯氧化镁。研究了加入硫酸后白云石灰乳终点pH、反应温度、硫酸镁浓度和煅烧温度对镁的浸出率、沉淀率以及产品氧化镁纯度的影响,最终确定最佳工艺条件为:灰乳终点pH为6,反应温度为40 ℃,硫酸镁浓度为0.8 mol/L,煅烧温度为900 ℃。在此条件下制备的氧化镁纯度达到99.0%以上,满足高纯氧化镁的要求。  相似文献   

13.
Magnetic nanoparticles have been applied in various fields because of their interesting magnetic properties. Immobilization on magnetic nanoparticles is a very important step in functionalizing them. We examined protein immobilization efficiency using interactions between his-tagged enhanced green fluorescence protein and affordable cationic ferrite magnetic nanoparticles for the first time. Four types of ferrite magnetic nanoparticles were verified: cobalt iron oxide, copper iron oxide, nickel iron oxide, and iron (III) oxide as negative controls. Among the four ferrite magnetic nanoparticles, copper ferrite magnetic nanoparticle was confirmed to have the highest immobilization efficiency at 3.0 mg proteins per gram ferrite magnetic nanoparticle and 78% of total enhanced green fluorescence protein. In addition, the maximum binding efficiency was determined for copper ferrite magnetic nanoparticle. Consequently, this newly verified his-tag-immobilizing capacity of copper ferrite magnetic nanoparticle could provide a facile, capable, and promising strategy for immobilizing his-tagged proteins or peptides with high purity for biosensors, magnetic separation, or diagnostics.  相似文献   

14.
以氧化铁皮作为除酸剂,与盐酸酸洗废液反应制得FeCl2溶液,再采用空气-双氧水双重氧化和沉淀法从中制得α-Fe2O3纳米颗粒。分析了FeCl2质量浓度、氨水质量浓度、超声时间和煅烧温度对产物的的粒径和纯度的影响。采用场发射扫描电子显微镜(SEM)和X射线衍射仪(XRD)对产物的形貌和结构进行了表征。优化实验结果表明,FeCl2质量浓度为16 g/L,氨水质量浓度为7.5 g/L,超声时间为50 min,煅烧温度为750℃时,制得了分散性虽然一般,但纯度较高的α-Fe2O3,其含量高达95.3%,平均晶粒尺寸约为38.2 nm。这为盐酸酸洗废液的资源化利用提供了实验基础。  相似文献   

15.
白云石的综合开发利用   总被引:4,自引:0,他引:4  
介绍了以白云石为原料制备轻质氧化镁和无水氯化钙的工艺流程。采用工业副产盐酸分解白云石粉 ,选用氨水作为镁的沉淀剂 ,从技术上保证获得易分离、纯度高的氧化镁 ,由此工艺制得的轻质氧化镁和无水氯化钙质量分数都在 98%以上。该工艺具用钙镁利用率高 ,产品纯度稳定 ,无三废污染、综合利用效果好等优点 ,具有较显著的经济和社会效益。  相似文献   

16.
Physico-chemical equilibria that influence oxide powders' precipitation from an aqueous solution can be substantially altered when the process is carried out in a microemulsion system. To obtain nanosized MnFe2O4 and gain information about the physico-chemical characteristics of products, Mn2+ and Fe3+ metal ions were induced to precipitate in a toluene/water/sodium dodecylbenzenesulfonate microemulsion system. Portions of the precipitated powder were differently treated, both in solution and in the solid state, and the role of restricted aqueous domains in the obtained materials was investigated. X-ray diffraction profile-fitting methods and chemical analysis were applied to characterize the powder particles. Samples obtained from the selected microemulsion were identified as nanosized mixed hydroxide compounds. A low metal content and a limited matter exchange among aqueous nanodroplets appear to inhibit hydroxide to oxide transformation inside the selected micellar system. A calcination process of precipitated powder was required to obtain a manganese ferrite compound.  相似文献   

17.
利用硫酸镁废液制备活性氧化镁工艺研究   总被引:2,自引:0,他引:2  
硫酸法处理高镁红土镍矿过程中产生大量的硫酸镁废液,提出利用硫酸镁废液制备活性氧化镁工艺.工艺过程:采用石灰中和硫酸镁废液至pH为12左右得到氢氧化镁溶液,氢氧化镁溶液经二氧化碳微压碳化得到碳酸氢镁溶液,碳酸氢镁溶液经热解得到碱式碳酸镁沉淀,沉淀物经过滤、洗涤、干燥、焙烧得到活性氧化镁.在最佳条件下制备的活性氧化镁达到HG/T 3928-2007《工业活性轻质氧化镁》要求.采用硫酸镁废液制备活性氧化镁,一方面可以解决硫酸镁废液的治理问题,为提高高镁红土镍矿资源的综合利用率开辟一条新途径:另一方面可以制备高附加值的活性氧化镁产品.  相似文献   

18.
以工业废弃物粉煤灰为初始原料,经酸处理除杂、碱处理活化后,采用常规水热法合成高纯ZSM-5沸石。考察酸处理过程的温度、时间和酸浓度等对酸浸取效果的影响,以及碱处理过程的焙烧温度和碱灰质量比等对碱熔活化的影响,采用XRF、XRD、SEM以及N2吸附-脱附等手段对各阶段样品进行表征。结果表明,盐酸处理可以除去粉煤灰中氧化钙、氧化铁等绝大部分碱性氧化物杂质,最适宜酸处理条件下所得粉煤灰中氧化硅和氧化铝质量分数之和由51.51%上升到处理后的85.37%;以最适宜高温氢氧化钠碱熔活化条件下所得活性硅铝溶液为原料,水热合成类似球状结构并具有较高比表面积和相对结晶度的高纯ZSM-5沸石,进而获得粉煤灰水热合成ZSM-5沸石的最佳工艺条件。  相似文献   

19.
在硝酸氧化法制备氧化锡粉体基础上,通过改进制备工艺及条件,制得高纯度高比表面积氧化锡粉体,即:在络合能力强的复合有机酸溶液中加入纯度在99.90%以上的高纯锡,形成中间共溶体;向中间共溶体中滴加硝酸和氧化剂进行凝胶化反应,得到灰白色膏状前驱体;向膏状前驱体中滴加氨水进行聚合反应,得到棕色透明液体;棕色透明液体经过滤、喷雾干燥、热处理和粉碎得到氧化锡粉体。产品质量检测结果为:产品纯度为99.90%,中位径为3.5 μm、比表面积为20.79 m2/g、表观密度为0.81 g/cm3。该工艺简单,生产周期短,成本低,易于产业化。  相似文献   

20.
A range of high purity iron oxides are prepared by varying basic operation parameters of an industrial spray roasting process. These iron oxides are investigated in relation to their morphology and subsequently evaluated as raw materials for MnZn-ferrite preparation. It appears that the most important morphological parameters for determining the reactivity (defined as firing shrinkage at equal compaction density) of the high purity iron oxide, and consequently the final density and magnetic properties of the ferrite specimens, are the primary particle size and the number of primary particles per aggregate. As found, the specific surface area of the iron oxide is of no predictive value for the behavior of the iron oxide in a MnZn-ferrite manufacturing process. A small primary particle size is important for a high reactivity; however, when particles are packed together in large aggregates, they are not available for the prefiring reactions. As a result, reactive sintering takes place leading to high porosity and bad microstructure. As found by the characterization methods employed in this article, the optimum iron oxides for MnZn-ferrite preparation should have a primary particle size between 0.45 and 0.55 μm with an aggregate size below 1.60 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号