首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用热重分析仪(TG-DTG)分析了NH4H2PO4活化甘蔗叶时的热解历程和活化反应机理,研究了活化剂浓度、液料比、浸泡时间、活化温度及活化时间等工艺因素对甘蔗叶活性炭样品得率、碘吸附值的影响,并运用扫描电子显微镜(SEM)对甘蔗叶及其活性炭样品进行了表征。结果表明,甘蔗叶制备活性炭的反应为4C+2NH4H2PO4→P2O3+CH4↑+CO2↑+2CO↑+2NH3↑+H2O↑甘蔗叶活性炭的碘吸附值随着活化时间的延长而增加,随着活化剂浓度、液料比、浸泡时间、活化温度的增加而呈现先增后减的变化规律;甘蔗叶活性炭的最优制备工艺条件为活化剂浓度2.5%(质量分数),液料比为5∶1,浸泡时间为20 h,活化温度为700℃,活化时间为60 min,所制备的活性炭样品具有丰富的管束结构,其得率和碘吸附值分别为30.9%、993.33 mg/g。  相似文献   

2.
研究了玉米秸秆磷酸活化法制备吸附剂的工艺条件,采用正交试验探讨了料液比、磷酸浓度、硫酸浓度、活化时间、活化温度等因素对吸附剂碘吸附值和产率的影响,得到试验室条件下的最佳工艺条件,即料液比1∶3.0,磷酸浓度40%,硫酸浓度9%,活化时间45min,活化温度350℃。该条件下,制备的吸附剂碘吸附值优于市售的商业活性炭样品。用SEM和XRD表征了玉米秸秆活化前后微观结构的变化;氮气吸附仪对比表面积和孔径进行了分析,结果表明,自制吸附剂具有较规整的中孔和大孔结构,比表面积高于市售活性炭。  相似文献   

3.
磷酸法活化煤焦油渣制备活性炭研究   总被引:1,自引:0,他引:1  
研究了以陕西煤焦油渣作为原料,用磷酸作为活化剂,在400~1000℃的条件下经一步炭活化法制备活性炭。研究了炭活化温度、时间、料剂比对煤焦油渣制备活性炭吸附性能及孔结构的影响。实验结果表明炭活化温度、炭活化时间主要影响活性炭产品的得率,高温和长时间会导致更多的碳损失;活性炭的吸附性能及孔结构主要受炭活化温度和料剂比影响。最佳活化工艺条件为850℃、3h、1∶3。通过其活性炭表面孔径分布及表面官能团含量变化表征,用磷酸浸泡煤焦油渣制备活性炭有利于大、中孔结构的产生,其最佳活化条件下孔径分布约在20~100nm。  相似文献   

4.
为实现废旧竹材的二次利用,以废旧竹材为原料,采用微波法制备高性能的竹基活性炭。以亚甲基蓝去除率为指标,考察活化剂、浸渍条件、微波辐照条件对竹基活性炭吸附性能的影响。获得最佳的制备条件为:以40wt%的磷酸为活化剂,浸渍固液比1g∶12.5mL、浸渍时间14h、微波功率560W、活化时间5min、活化温度130℃、反应压力1.25×103kPa,此时竹基活性炭的亚甲基蓝去除率达87%。与传统马弗炉焙烧工艺相比,该工艺活化温度降低,活化时间缩短,但竹基活性炭吸附性能明显提高。  相似文献   

5.
炼油厂石油焦活性炭的制备   总被引:9,自引:4,他引:5  
用炼油厂石油焦为原料,以KOH为活性剂进行活化制备活性炭,考察了活化温度、活化时间以及活化剂用量对BET比表面积和亚甲基蓝吸附的影响,优化出最佳工艺过程:活化温度为800 ℃,活化时间为1 h,活化剂与石油的用量比为5:1。用双柱定容容量法测定了实验制备活性炭对甲烷的吸附量,与常用活性炭比较,是其吸附量的5 倍左右。  相似文献   

6.
以毛豆秸秆、茄子秸秆为原料,KOH为活化剂制备活性炭。采用正交实验对活性炭的制备工艺进行了优化,并研究了该活性炭对正己烷蒸气的吸附、解吸特性。实验结果表明:毛豆秸秆活性炭吸附性能优于茄子秸秆活性炭;毛豆秸秆活性炭最佳制备条件为炭化温度450℃、碱炭质量比为1、活化时间90min、活化温度750℃,此条件下对正己烷蒸气的吸附率为60.44%;茄子秸秆活性炭的最佳制备条件为炭化温度450℃、碱炭质量比为5、活化时间60min、活化温度650℃,此条件下对正己烷蒸气的吸附率为55.60%;二者的吸附率均达到较高水平;随实验次数增加,2种活性炭对正己烷的解吸率升高,而吸附率降低。  相似文献   

7.
混合活化制备稻壳基活性炭研究   总被引:3,自引:0,他引:3  
陈俊英  冯向应  史召霞 《功能材料》2012,43(23):3278-3281
以脱硅稻壳灰为原料,采用混合活化法制取活性炭,通过4种单一活化剂物料比的实验,确定了最佳物料比为1∶3;设计了5种混合活化的配比方案,实验结果表明在NaOH&Na2CO3和KOH&K2CO3配比为2.5∶0.5时碘吸附值和亚甲基蓝吸附值分别达到最优,说明辅助活化剂的加入可有效提高稻壳基活性炭的吸附性能。在总物料比和活化剂混合配比确定的条件下,进行了浸渍液质量分数、活化温度、活化时间3个单因素实验,结果显示,浸渍液质量分数为30%、活化温度为500℃、活化时间为40min时活化效果最佳,其中碘吸附值最高可达1528.76mg/g,可知混合活化对制备稻壳基活性炭有显著作用。  相似文献   

8.
ZnCl2活化茄子秸秆制备活性炭及表征   总被引:2,自引:0,他引:2  
以茄子秸秆为原料、ZnCl2为活化剂制备活性炭。通过正交实验方法确定了制备活性炭的最佳工艺条件,采用低温氮气吸附、BET、Langmuir和BJH理论对其孔结构进行了表征,利用红外光谱分析样品的表面官能团,扫描电镜观察表面形貌。结果表明以茄杆活性炭的最佳工艺条件:浸渍比为2,浸渍时间为8h,活化温度为550℃,活化时间为60min,所得的活性炭的碘吸附值为1270.06mg/g,亚甲基蓝吸附值为17.4mL/g;BET和Langmuir比表面积分别为1649.615和1851.649m2/g,吸附总孔容为0.488cm3/g,吸附平均孔径为2.241nm。  相似文献   

9.
刘皓  邓保炜  陈娟  白晓惠  张楠 《材料导报》2016,30(10):87-90
以兰炭粉为原料,水蒸汽为活化剂,采用物理活化法制备中孔活性炭。分别讨论了活化温度、活化时间、水蒸汽质量流量对活性炭碘吸附值的影响,并采用正交实验对工艺条件进行了优化。利用全自动物理吸附仪对活性炭的比表面积和孔结构进行表征。结果表明:随着活化温度的升高、活化时间的延长和水蒸汽流量的增大,活性炭的碘吸附值均呈现先升高后下降的变化规律。正交实验结果表明,水蒸汽活化兰炭粉的适宜条件为:活化温度900℃,活化时间60min,水蒸汽流量1.25g/min。此条件下制得的活性炭具有多级孔的特征,而且以中孔为主,其碘吸附值为924.45mg/g,比表面积为818.52m2/g。  相似文献   

10.
赵朔  裴勇 《材料导报》2012,26(4):87-90
以笋壳为原料,采用氯化锌活化法制备活性炭,通过正交试验研究了氯化锌与笋壳质量比、氯化锌溶液浓度、活化温度、活化时间等因素对笋壳基活性炭的活化收率、碘吸附值和亚甲基蓝吸附值的影响。研究表明,活化温度对活性炭性能的影响最显著;氯化锌活化法制备笋壳基活性炭的最佳条件为:m(氯化锌)/m(笋壳)=2:1,氯化锌溶液浓度为5%,活化温度为600℃,活化时间为90min。采用氮气吸附-脱附法对最佳条件下制备的活性炭进行表征,结果表明,该条件下制备的活性炭为中孔型活性炭。  相似文献   

11.
椰壳纤维基高比表面积中孔活性炭的制备   总被引:3,自引:0,他引:3  
以椰壳纤维为原料,制备高比表面积中孔活性炭.采用正交试验设计实验方案,研究KOH和NaOH复合活化法制备活性炭的实验方案与工艺条件.考察了活化剂配比、炭化温度、活化温度、时间和升温速率对所制活性炭吸附性能的影响.在最佳工艺条件下,所制活性炭的比表面积达到2032m2/g,中孔发达,特别是2nm~4nm的,中孔比例达到28%.活性炭对的碘吸附值为1435mg/g,亚甲基蓝吸附值为495mg/g,产率为49%.  相似文献   

12.
以无患子残渣为原料,KOH与K2CO3作为活化剂,采用微波炭化和活化两步法制备超高比表面积活性炭,通过正交实验优化活性炭的制备工艺,探讨了碱炭比、活化温度和活化时间对活性炭吸附亚甲基蓝吸附值的影响。利用N2吸脱附实验、XRD、FT-IR等实验技术,对制备的活性炭结构与性能进行了表征。结果表明,在碱炭质量比为4∶1、活化温度800℃、活化时间30 min的条件下,所制备的活性炭对亚甲基蓝吸附值为595 mg/g,BET比表面积为3 479 m2/g,吸附累积总孔容达1.8262 cm3/g,平均孔径为2.0997 nm。  相似文献   

13.
竹活性炭的制备及其改性研究   总被引:1,自引:0,他引:1  
以武夷山竹片为原料,采用磷酸活化、炭化法制备竹活性炭。考察了磷酸浓度、液固比、炭化温度、活化温度及活化时间对竹活性炭比表面积影响。采用L_(16)(4~5)正交试验优化工艺参数。结果表明,最佳工艺条件为炭化温度600℃、活化温度450℃、活化时间2h、磷酸浓度4mol/L、液固质量比为3,可制得的竹活性炭比表面积为521.30m~2/g,对Pb~(2+)吸附量为46.36mg/g。经硝酸和硫酸氧化改性后,竹活性炭表面的羧基和羟基含量增加,改性后对Pb~(2+)吸附量最大为58.593mg/g,为改性前的1.26倍。竹木废弃物制备的活性炭对重金属有良好的吸附性能,为工业上处理废水提供一种新方法,具有较好的社会和经济效益。  相似文献   

14.
以废弃的芋叶柄为原料,K2CO3为活化剂,制备芋叶柄基活性炭,考察炭化和活化工艺条件对活性炭吸附性能的影响,采用等温氮吸脱附测试、扫描电子显微镜(SEM)对样品材料进行了测试。结果表明:若以碘吸附值作为评价指标,最佳工艺条件为K2CO3浓度200g/L、活化温度850℃、活化时间35min,碘值为1930.4mg/g,BET比表面积为633.215m2/g,孔容为0.194cm3/g,孔径为18.45nm。以亚甲基蓝吸附值作为评价指标,最佳工艺条件为K2CO3浓度175g/L、活化温度875℃、活化时间35min,亚甲基蓝吸附值为298.8mg/g,BET比表面积为604.708m2/g,孔容为0.076cm3/g,孔径为18.533nm。  相似文献   

15.
槟榔渣制备活性炭   总被引:3,自引:0,他引:3  
活性炭作为一种无机化工产品,由于具有许多独特的性能,各国需求量日益增大.以槟榔渣为原料,通过活化剂浸泡,高温炭化活化,制备活性炭.根据正交实验得出的最佳工艺条件为:用浓度为30%的ZnCl2溶液以1:4的固液比浸泡槟榔渣,然后在600℃下进行炭化活化.制得的活性炭样品的亚甲蓝吸附值在25mL/0.1g以上,对模拟含铬电镀废水中Cr(Ⅵ)的去除率在98%以上,吸附平衡时间约为5小时.实验结果说明,这种活性炭吸附处理模拟含铬电镀废水的效果很好,吸附能力较高.氯化锌法活性炭生产值得进一步研究、探讨并推广.  相似文献   

16.
以甘蔗渣为原料、H3PO4为活化剂制备甘蔗渣活性炭。采用热重分析仪(TGA)研究了甘蔗渣/H3PO4的热解过程,运用正交试验对甘蔗渣活性炭的制备工艺进行了优化,考察了制备过程中回收的活化剂对样品性能的影响规律。研究表明,制备甘蔗渣活性炭的适宜温度为460~770K;优化后的工艺条件为H3PO4体积分数17%、添加剂X含量5%、活化温度773K、活化时间0.33h,在该条件下所制得的活性炭样品的碘吸附值为1040.13mg/g,得率为43.18%;活化剂H3PO4经10次循环回收利用后,样品的碘吸附值为945.84mg/g、得率为45.82%,表明活化剂H3PO4经过多次回收利用仍能制备出性能优良的活性炭。  相似文献   

17.
采用正交试验方法系统研究了活化剂、添加剂、活化温度、活化时间等因素对磷酸活化甘蔗叶制备活性炭的得率、亚甲基蓝吸附值的影响,并利用SEM对样品进行了表征。结果表明,磷酸活化甘蔗叶制备活性炭的最佳工艺为:将甘蔗叶浸泡于6%添加剂1及1%添加剂2、体积浓度为35%的磷酸溶液中,浸泡12h后,在673K条件下活化40min,所制得的活性炭的微观孔结构排列整齐,活性炭的得率和亚甲基蓝吸附值分别为47.05%、202.50mg/g,其中亚甲基蓝吸附值为国家标准GB/T 13803.2-1999活性炭一级品的1.5倍。  相似文献   

18.
以马尾藻为原料,采用KOH活化法制备高比表面积活性炭。探索制备马尾藻基活性炭的实验方案和最佳工艺条件。采用正交实验法研究了炭化温度、炭化时间、低温活化温度、低温活化时间和浸渍时间对制得活性炭比表面积和孔容的影响。采用N_2吸附、SEM表征考察了活性炭的孔隙结构和表面形貌。通过正交实验法分析发现,制备马尾藻基高比表面积活性炭的最佳工艺条件为:炭化温度600℃,炭化时间180min,低温活化温度400℃,低温活化时间45min,浸渍时间2h。在16组实验条件下,制备的活性炭比表面积最大为3 122m2/g,所有样品的孔径几乎全部分布在6nm以内。  相似文献   

19.
采用化学活化法制备载Mn活性炭纤维(ACF-Mn),考察了活化剂的浓度、活化时间对吸附性能的影响,利用XRD、SEM、EDX等手段描述了晶体结构,表面形貌和元素组成.结果表明,制备ACF-Mn的最佳工艺条件为:活化剂浓度2%,活化温度700℃,活化时间80min,ACF-Mn的碘吸附值和碱性官能团含量分别为905mg·g-1和83mmol·g-1,得率为88%,担载Mn的质量百分比为2.26%,原子百分比为0.28%.ACF-Mn为乱层石墨微晶结构,微晶尺寸较小,有利于微孔形成,处理后的纤维表面粗糙度和碱性官能团含量明显增大,提高了ACF的吸附性能.  相似文献   

20.
研究了以无烟煤为原料,通过预炭化、再采用KOH活化法制备煤基活性炭的工艺。利用场发射扫描电子显微镜(SEM)研究了活性炭的显微结构,并测试了活性炭对甲基橙(MO)的吸附性能。结果表明:无烟煤炭化产物与KOH质量比(炭碱比)、活化温度、活化时间对煤基活性炭显微结构及吸附性能有显著影响。在炭碱比为1∶1、活化温度为900℃、活化时间1h的条件下,能制备出吸附性能良好的活性炭材料,吸附15min时对MO的吸附率可达到89.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号