首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we investigate the extent to which well-known sediment transport capacity formulas can be used in one-dimensional (1D) numerical modeling of dam-break waves over movable beds. The 1D model considered here is a one-layer model based on the shallow-water equations, a bed update (Exner) equation, a space-lag equation for the nonequilibrium sediment transport and an empirical formula calculating the sediment transport capacity of the flow. The model incorporates a variety of sediment transport capacity formulas proposed by Meyer-Peter and Müller, Bagnold, Engelund and Hansen, Ackers and White, Smart and Jaeggi, van Rijn, Rickenmann, Cheng, Abrahams and Camenen, and Larson. We examine the performance of each formula by simulating four idealized laboratory cases on dam-break waves over sandy beds. Comparisons between numerical results and measurements show that for each case better predictions are obtained using a particular formula, but overall, formulas proposed by Meyer-Peter and Müller (with the factor 8 being replaced by 12), Smart and J?ggi, Cheng, Abrahams and Camenen, and Larson rank as the best predictors for the entire range of conditions studied here. Moreover, results show that in the cases where a bed step exists, implementing a mass failure mechanism in the numerical modeling plays an important role in reproducing the bed and water profiles.  相似文献   

2.
3.
Numerical or artificial diffusion is the unintentional smoothing of gradients associated with the discretization of the transport equations. In lakes and reservoirs where through-flow is small, the effects of numerical diffusion of mass are cumulative, leading to a progressive weakening of vertical density stratification. This density field misrepresentation precludes accurate, long-term, three-dimensional (3D), hydrodynamic simulations on fixed grids in closed basins with an active thermocline. An ad hoc technique to limit the destratifying effects of numerical diffusion of mass is presented and tested for a 3D, hydrostatic, Z-coordinate numerical model. The technique quantifies the domain-integrated numerical diffusion by assessing the change in the background potential energy Eb. At each time step, the change in Eb associated with numerical diffusion is calculated, then removed using a sharpening filter applied to each water column. In idealized test cases, the filtering technique is effective in maintaining density stratification over one year while undergoing periodic, large-amplitude forcing by internal waves. Forty-day simulations of Lake Kinneret compared to field measurements demonstrate improved representation of density stratification using the filtering technique.  相似文献   

4.
Numerical Morphological Modeling of Open-Check Dams   总被引:1,自引:0,他引:1  
Open-check dams are built in mountain streams to control sediment transport during a flood. Sediment passes through them at the lowest discharges, whereas deposition occurs during the highest discharges. Open-check dams are currently designed based mainly on construction experience. Modeling of hydraulics and bed morphology in check dams involves mixed flows (supercritical and subcritical) as well as discontinuities such as hydraulic jumps. In this paper an unsteady coupled numerical mobile-bed model that can tackle rapid varying flows and discontinuities is applied. The numerical technique is based on the classical staggered grids and implicit integration schemes, together with a proper mass and momentum balance. The 1D numerical model is successfully verified with experimental data of slit-check dams. The applicability of the model in the design of open-check dams is also illustrated.  相似文献   

5.
A three-dimensional (3D) rock slope toppling occurred in a discontinuous rock mass. To simulate the failure process and study the mechanism of this rock failure with contact and large displacement in 3D, a new discrete numerical method has been developed called the 3D discontinuous deformation analysis (DDA). This article first introduces the basic principles and then derives the formulas in detail. Finally, the slope failure simulation is applied as an example to investigate the applicability of this new method to rock slope failure research. The simulation results indicate the advantages of using this new method to study the mechanism of a rock slope failure with 3D behavior.  相似文献   

6.
Dividing flows in open channels are commonly encountered in hydraulic engineering systems. They are inherently three-dimensional (3D) in character. Past experimental studies were mostly limited to the collection of test data on the assumption that the flow was 1D or 2D. In the present experimental study, the flow is treated as 3D and test results are obtained for the flow characteristics of dividing flows in a 90°, sharp-edged, rectangular open-channel junction formed by channels of equal width. Depth measurements are made using point gauges, while velocity measurements are obtained using a Dantec laser Doppler anemometer over grids defined throughout the junction region. A 3D turbulence model is also developed to investigate the dividing open-channel flow characteristics. The predicted flow characteristics are validated using experimental data. Following proper model validation, the numerical model developed can yield design data pertaining to flow characteristics for different discharge and area ratios for other dividing flow configurations encountered in engineering practice. Energy and momentum coefficients based on the present 3D model yield more realistic energy losses and momentum transfers for dividing flow configurations. Data related to secondary flows provide information vital to bank stability, if the branch channel sides are erodible.  相似文献   

7.
Extended irreversible thermodynamics (EIT) provides a framework for deriving extensions to phenomenological equations (e.g., Newton's law of viscosity, Fick's law of mass transport, and Darcy's law for porous media flow) for problems involving high frequencies (i.e., rapid transients). In this paper, a phenomenological equation is derived for energy loss in 1D unsteady pipe flow using an EIT formalism. The resulting wall shear stress is equal to the sum of (1) the steady-state shear stress; (2) a term that is proportional to the local (i.e., temporal) acceleration; and (3) a term that is proportional to the product of the velocity and the convective (i.e., spatial) acceleration. The form of this EIT-based wall shear stress formula shows that EIT provides a physical basis for instantaneous acceleration based unsteady friction formulas. It also illustrates the limitations and underlying assumptions of these models. For example, instantaneous acceleration based unsteady friction formulas are limited to fast transients (i.e., transients in which the water hammer timescale is significantly smaller than the diffusion timescale). A characteristics solution for unsteady pipe flow is proposed in which the phenomenological equation is used to model energy dissipation. Comparison of numerical test results with measured data from upstream and downstream valve closure laboratory experiments shows excellent agreement.  相似文献   

8.
The research presented in this paper evaluates the flexural performance of bridge deck panels reinforced with 2D fiber-reinforced polymer (FRP) grids. Two different FRP grids were investigated, one reinforced with a hybrid of glass and carbon fibers and a second grid reinforced with carbon fibers only. Laboratory measured load-deflection, load-strain (reinforcement and concrete), cracking, and failure behavior are presented in detail. Conclusions regarding failure mode, limit-state strength, serviceability, and deflection compatibility relative to AASHTO mandated criteria are reported. Test results indicate that bridge decks reinforced with FRP grids will be controlled by serviceability limit state and not limit-state ultimate strength. The low axial stiffness of FRP results in large service load flexural deflections and reduced shear strength. In as much as serviceability limits design, overreinforcement is recommended to control deflection violation. Consequently, limit-state flexural strength will be compression controlled for which reduced service stresses or ACI unified compression failure strength reduction factors are recommended.  相似文献   

9.
A general-purpose numerical method is developed for solving the full three-dimensional (3D), incompressible, unsteady Reynolds-averaged Navier-Stokes (URANS) equations in natural river reaches containing complex hydraulic structures at full-scale Reynolds numbers. The method adopts body-fitted, chimera overset grids in conjunction with a grid-embedding strategy to accurately and efficiently discretize arbitrarily complex, multiconnected flow domains. The URANS and turbulence closure equations are discretized using a second-order accurate finite-volume approach. The discrete equations are integrated in time via a dual-time-stepping, artificial compressibility method in conjunction with an efficient coupled, block-implicit, approximate factorization iterative solver. The computer code is parallelized to take full advantage of multiprocessor computer systems so that unsteady solutions on grids with 106 nodes can be obtained within reasonable computational time. The power of the method is demonstrated by applying it to simulate turbulent flow at R ? 107 in a stretch of the Chattahoochee River containing a portion of the actual bridge foundation located near Cornelia, Georgia. It is shown that the method can capture the onset of coherent vortex shedding in the vicinity of the foundation while accounting for the large-scale topographical features of the surrounding river reach.  相似文献   

10.
A numerical method is developed for carrying out unsteady Reynolds-averaged Navier-Stokes (URANS) simulations and detached-eddy simulations (DESs) in complex 3D geometries. The method is applied to simulate incompressible swirling flow in a typical hydroturbine draft tube, which consists of a strongly curved 90° elbow and two piers. The governing equations are solved with a second-order-accurate, finite-volume, dual-time-stepping artificial compressibility approach for a Reynolds number of 1.1 million on a mesh with 1.8 million nodes. The geometrical complexities of the draft tube are handled using domain decomposition with overset (chimera) grids. Numerical simulations show that unsteady statistical turbulence models can capture very complex 3D flow phenomena dominated by geometry-induced, large-scale instabilities and unsteady coherent structures such as the onset of vortex breakdown and the formation of the unsteady rope vortex downstream of the turbine runner. Both URANS and DES appear to yield the general shape and magnitude of mean velocity profiles in reasonable agreement with measurements. Significant discrepancies among the DES and URANS predictions of the turbulence statistics are also observed in the straight downstream diffuser.  相似文献   

11.
Based on the zeroth-order approximation of a two-scale asymptotic expansion, equivalent elastic shear coefficients of periodic structures can be evaluated via the solution of a local function τklij(y), and the homogenization process reduces to solving the local function τklij(y) by invoking local periodic boundary conditions. Then, effective transverse shear stiffness properties can be analytically predicted by reducing a local problem of a given unit cell into a 2D problem. In this paper, an analytical approach with a two-scale asymptotic homogenization technique is developed for evaluation of effective transverse shear stiffness of thin-walled honeycomb core structures with general configurations, and the governing 3D partial differential equations are solved with the assumptions of free warping constraints and constant variables through the core wall thickness. The explicit formulas for the effective transverse shear stiffness are presented for a general configuration of honeycomb core. A detailed study is given for three typical honeycomb cores consisting of sinusoidal, tubular, and hexagonal configurations, and their solutions are validated with existing equations and numerical analyses. The developed approach with certain modifications can be extended to other sandwich structures, and a summary of explicit solutions for the transverse shear stiffness of common honeycomb core configurations is provided. The lower bound solution provided in this study is a reliable approximation for engineering design and can be efficiently used for quick evaluation and optimization of general core configurations. The upper bound formula, based on the assumption of uniform shear deformation, is also given for comparison. Further, it is expected that with appropriate construction in the displacement field, the more accurate transverse stiffness can be analytically attained by taking into account the effect due to the face-sheet constraints.  相似文献   

12.
The flow of interdendritic liquid in the mushy zone of a casting during solidification is the major cause of macrosegregation. The permeability of the mushy zone is a measure of its conductance to flow and is a key parameter to consider when investigating macrosegregation. This paper concentrates on developing models of permeability for flow normal to columnar dendrites at high liquid fractions, where reliable experimental data are not available. It uses a numerical method called lattice gas cellular automata. The utility of this method lies in the ease with which computations are made in very irregular geometries. No special grids are required and the appropriate boundary conditions are easily applied at all solid-fluid boundaries. Furthermore, numerical stability is guaranteed.  相似文献   

13.
Eleven types of single circular biplane grids with different diameter (d) and mesh (M) were vertically and constantly oscillated inside a 2 L square jar. The velocity components were measured using a 2D laser doppler anemometer. The average root-mean-square turbulent velocity q′ values were found to be relatively constant at both vertical and horizontal points of measurement—a condition that could not be achieved in the case of impeller mixing. Since the mixing intensity was uniform within the jar, the average volume velocity gradient ? could be applied as the surrogate mixing intensity parameter. It was also found that q′ was linearly related to the vertical grid speed and grid physical characteristics, indicating that the mixing was easily controlled. The macro length scale (L) was calculated and was found to be constant and proportional to d or M, as it should be in the case of turbulent mixing. This study shows the potential of grids as the mixing devices that can be expected to produce an optimum mixing environment for the flocculation process.  相似文献   

14.
This paper presents a three-dimensional (3D) and two-dimensional (2D) numerical analysis of a case study of a combined vacuum and surcharge preloading project for a storage yard at Tianjin Port, China. At this site, a vacuum pressure of 80?kPa and a fill surcharge of 50?kPa were applied on top of the 20-m-thick soft soil layer through prefabricated vertical drains (PVD) to achieve the desired settlements and to avoid embankment instability. In 3D analysis, the actual shape of PVDs and their installation pattern with the in situ soil parameters were simulated. In contrast, the validity of 2D plane strain analysis using equivalent permeability and transformed unit cell geometry was examined. In both cases, the vacuum pressure along the drain length was assumed to be constant as substantiated by the field observations. The finite-element code, ABAQUS, using the modified Cam-clay model was used in the numerical analysis. The predictions of settlement, pore-water pressure, and lateral displacement were compared with the available field data, and an acceptable agreement was achieved for both 2D and 3D numerical analyses. It is found that both 3D and equivalent 2D analyses give similar consolidation responses at the vertical cross section where the lateral strain along the longitudinal axis is zero. The influence of vacuum may extend more than 10?m from the embankment toe, where the lateral movement should be monitored carefully during the consolidation period to avoid any damage to adjacent structures.  相似文献   

15.
大型采空区灾害存在突发性与破坏范围大等特点,如何对采空区灾害进行有效的预防和控制是采空区隐患治理的重要工作。以某矿山为背景,利用井下无人机三维激光扫描系统对采空区进行精细探测,并利用Geomagic对模型进行优化,然后利用FLAC3D进行采空区稳定性分析,确定了大型复杂采空区的隐患区域;将圈定的隐患区域与现场采空区实际冒落情况进行对比,验证了采空区空间结构演化结果与数值分析结果相吻合,证实了该数值分析方法的可靠性。最后基于采空区三维激光扫描结果,再次对采空区进行数值分析,重新圈定采空区的隐患区域。研究结果为矿山采空区安全隐患识别和治理措施的制定提供了科学依据。  相似文献   

16.
Three-Dimensional Multiscale Bifurcation Analysis of Granular Media   总被引:1,自引:0,他引:1  
This paper deals with Hill’s bifurcation criterion, which is very well suited to describe various failure modes in granular media. The first part of this paper is dedicated to the analytical and numerical investigation of this criterion by considering phenomenological constitutive relations: the incrementally piece-wise linear and nonlinear relations proposed by Darve. The 3D bifurcation domain and 3D cones of unstable directions are given for these two relations. A similar analysis is performed with a micromechanical model in the second part of the article. Finally, a qualitative comparison of the results obtained with these two different approaches leads us to some key conclusions about this material instability criterion, which is studied for the first time for general 3D conditions, by considering these nonconventional constitutive relations.  相似文献   

17.
18.
Microplane Model M4 for Concrete. II: Algorithm and Calibration   总被引:1,自引:0,他引:1  
This paper represents Part II of a two-part study in which a new improved version of the microplane constitutive model for damage-plastic behavior of concrete in 3D is developed. In Part II, an explicit numerical algorithm for model M4 is formulated, the material parameters of model M4 are calibrated by optimum fitting of the basic test data available in the literature, and the model is verified by comparisons with these data. The data in which strain localization must have occurred are delocalized, and the size effect is filtered out from the data where necessary. Although model M4 contains many material parameters, all but four have fixed values for all types of concretes. Thus the user needs to adjust only four free material parameters to the data for a given concrete, for which a simple sequential identification procedure is developed. If the user's data consist only of the standard compression strength and the strain at uniaxial stress peak, the adjustment is explicit and immediate. Good agreement with an unusually broad range of material test data is achieved.  相似文献   

19.
AASHTO-LRFD Live Load Distribution Specifications   总被引:1,自引:0,他引:1  
The live load distribution factors contained in the AASHTO-LRFD Bridge Design Specification present a major change to the AASHTO-LFD specifications that have been in effect for more than 50 years. This change has generated some interest in the bridge engineering community and has raised some questions. The AASHTO-LFD formulas are based on the girder spacing only and are usually presented as S∕D, where S is the spacing and D is a constant based on the bridge type. This method is applicable to straight and right (i.e., nonskewed) bridges only. The new formulas are more complex and consider more parameters, such as bridge length and slab thickness. It may not be obvious to the engineers what added accuracy and flexibility (e.g., skewed bridges) is gained by the increased complexity. This paper will present the background on the development of the formulas and compare their accuracy with the S∕D method. A discussion on the extension of the single girder design (using formulas) to the skewed bridges is also presented.  相似文献   

20.
1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] is known to modulate the development of bone and other mesenchymal cell types. Since osteoblasts and adipocytes are thought to arise in bone marrow from a common progenitor, this work examined the effects of 1,25-(OH)2D3 on adipocyte development, and in particular on the expression of lipoprotein lipase (LPL), which is an early marker for the differentiated adipocyte. 3T3-L1 preadipocytes were cultured in the presence of 1,25-(OH)2D3 (10(-9) to 10(-7) M) for up to 7 days. LPL activity was measured in the medium and cell extracts, and LPL messenger RNA levels were measured by Northern blotting. When compared to control cells, 10(-7) M 1,25-(OH)2D3 increased medium LPL activity by 2- to 3-fold and cellular LPL by 1.5-fold. Significant increases in medium and cellular LPL were observed at 10(-9) M and were maximal at 10(-7) M. Along with the increase in LPL activity, there was an increase in LPL messenger RNA by 2-fold at 5 days, and by 5-fold at 7 days. In addition to an increase in LPL, 1,25-(OH)2D3 increased expression of aP2, an adipocyte-specific marker associated with differentiation. After the addition of 1,25-(OH)2D3, there was a decrease in 3T3-L1 cell number, which is consistent with differentiation, and a decrease in vitamin D receptors. Finally, these cells developed a different morphology. 1,25-(OH)2D3-treated cells assumed a rounded appearance, although without detachment from the dish and without the degree of lipid accumulation usually associated with the addition of insulin, isbutylmethylxanthine, and dexamethasone. It is concluded that 1,25-(OH)2D3 induced LPL expression in 3T3-L1 cells through an induction of differentiation-dependent mechanism(s). These findings suggest an important role for 1,25-(OH)2D3 in normal adipocyte differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号