首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
以葡萄糖为碳源、乙酰胺为氮源、氢氧化钾(KOH)为活化剂,通过水热碳化及烧结处理,制备了氮掺杂多孔碳材料,将其与硫进行复合得到多孔碳/硫复合正极材料,考察了不同质量活化剂对多孔碳材料比表面积、孔容孔径及多孔碳/硫复合正极材料电化学性能的影响。结果表明:多孔碳前驱体与活化剂质量比为1∶4时制备的多孔碳材料具有最大的比表面积和孔隙率,且该材料与硫复合得到的多孔碳/硫复合正极材料具有最优的电化学性能、较高的放电比容量和良好的循环性能。  相似文献   

2.
煤炭作为一种来源广泛的非金属矿物,是制备大量多孔碳的理想原料。本文以1/3焦煤为原料,NaOH和KOH为活化剂,制备了多孔碳,并研究了硫/多孔碳复合正极材料的电化学性能。结果表明:采用NaOH和KOH单独活化时制备的多孔碳比表面积很大,分别为1 649 m2/g和1 867 m2/g,而采用NaOH和KOH混合活化制备的多孔碳比表面积大幅度下降,当NaOH与KOH质量比为1:1活化时多孔碳的比表面积最小,为290 m2/g。电化学测试表明,NaOH与KOH质量比为1:1混合活化的硫/多孔碳正极材料的电性能优于NaOH和KOH单独活化的硫/多孔碳正极材料,0.2 C下首次放电比容量为790 mA·h/g,库仑效率为93.16%,100次循环后放电比容量为740 mA·h/g。还分析讨论了煤基多孔碳孔径分布对电化学性能的影响。   相似文献   

3.
以高长径比的纤维素纳米纤丝(CNF)与片层结构的氧化石墨(GO)为原料,采用乙二胺还原和液氮梯度冷冻干燥制备纤维素纳米纤丝/石墨烯(CNF/rGO)复合气凝胶,并通过红外光谱、X射线衍射、X射线光电子能谱、扫描电镜、比表面积(BET)、电化学测试仪等对其进行性能表征。结果表明,所制备的CNF/rGO复合气凝胶具有完整的三维网络结构,当CNF和GO质量比为10∶1时,复合气凝胶的平均孔径为13nm,比表面积为110.2m2/g,在电流密度为1A/g下获得的质量比电容约为156F/g。  相似文献   

4.
聚乳酸接枝淀粉的原位溶液合成及表征   总被引:1,自引:0,他引:1  
以L-乳酸为接枝单体,辛酸亚锡为催化剂,采用原位溶液接枝工艺,在同一个反应体系中逐次完成淀粉糊化、丙交酯的生成及淀粉的聚乳酸接枝反应,制备了聚乳酸接枝淀粉,工艺简单、易于控制。研究了反应温度、L-乳酸与玉米淀粉质量比、反应时间和催化剂用量等对产物接枝率的影响,采用FTIR,1H-NMR和SEM对接枝产物进行了表征。结果表明:原位溶液合成产物为聚乳酸接枝淀粉;其最佳工艺条件的反应温度为95℃,L-乳酸与玉米淀粉质量比为3∶1,催化剂为乳酸用量的1%(质量分数),反应时间11 h,聚乳酸接枝率可达到14.81%,淀粉颗粒表面聚乳酸包覆均匀。  相似文献   

5.
以聚对苯二甲酸丁二醇酯(PBT)、聚丙烯(PP)为原料,采用熔融纺丝法制备出PBT/PP共混海岛纤维,用二甲苯溶解剥离基体相PP,制得PBT多孔纤维。通过差示扫描量热分析、扫描电镜、X射线衍射和比表面积及孔径分析等测试,研究了共混纤维及多孔纤维的结构与性能。结果表明,当PBT和PP质量比为70/30时,共混纤维的相容性最好,且溶除后的多孔纤维孔容较大,孔径较小,一致性数值也较大即多孔纤维的尺寸单分散性好;最佳的溶除温度为120℃,时间为40min,浓度为1∶50。  相似文献   

6.
以石油炼制副产品石油焦为原料,采用KOH活化法制备高比面积多孔炭,通过氨水水热处理对多孔炭进行表面渗氮改性。系统考察了KOH/石油焦比例(碱/炭比)对多孔炭孔结构及电化学性能的影响。结果表明多孔炭的比表面积、孔结构和电化学性能可以通过碱/炭比有效地调控。随着碱/炭比的增大,多孔炭的孔道逐渐增大,当碱炭比为3∶1时最大比表面积达到2 964 m~2·g~(-1)。当碱/炭比为5∶1时,多孔炭的比表面积和中孔率分别高达2 842 m~2·g~(-1)和67.0%,其在50 m A·g~(-1)电流密度下的比电容达到350 F·g~(-1)。氨水水热处理多孔炭,可以有效地在多孔炭表面引入氮原子,从而提高了多孔炭电极的电化学性能,尤其提高其在高电流密度下的比电容值。KOH活化以及氨水水热处理为制备高性能低成本石油焦基超级电容器电极材料提供了一种简单有效的方法。  相似文献   

7.
通过在聚丙烯腈(PAN)溶液中添加沥青,经静电纺丝、不熔化和炭化处理后,制备出沥青/聚丙烯腈复合纳米炭纤维无纺布.结果表明,沥青的加入,不仅减小了所制纳米炭纤维的直径、提高了其导电性,而且还增大了纳米炭纤维的比表面积、扩大了孔径分布,有效地改善了纳米炭纤维的容量和倍率性能.当沥青与PAN的质量比为1:1.5时,所得纳米...  相似文献   

8.
在钠硼硅玻璃体系中利用分相原理制备得到纳米多孔玻璃,并运用SEM、BET测试手段表征了纳米多孔玻璃的孔径分布、孔径大小和比表面积,以及热处理温度和时间对多孔玻璃表面形貌的影响。通过对纳米孔玻璃与氧化铝陶瓷基片复合的研究,得到一种能贮存大量生物和化学样本的载体材料,对生物芯片的发展将起到推动作用。  相似文献   

9.
在钠硼硅玻璃体系中利用分相原理制备得到纳米多孔玻璃,并运用SEM、BET测试手段表征了纳米多孔玻璃的孔径分布、孔径大小和比表面积,以及热处理温度和时间对多孔玻璃表面形貌的影响.通过对纳米孔玻璃与氧化铝陶瓷基片复合的研究,得到一种能贮存大量生物和化学样本的载体材料,对生物芯片的发展将起到推动作用.  相似文献   

10.
以淀粉为碳源,正硅酸乙酯(TEOS)为硅源,通过溶胶-凝胶法制备了碳化硅前驱体淀粉-SiO_2凝胶,将干凝胶在氩气氛中进行碳热还原制备碳化硅(SiC).用XRD、IR、SEM、TEM及N_2低温物理吸附等手段对合成的样品进行表征.结果表明,在淀粉-SiO2凝胶中添加镍催化剂在1450℃下就能合成出尺寸大小为40~60nm多孔高比表面积的纳米SiC,其孔径主要集中在4.2和10.6nm,比表面积为127.5m~2/g,孔体积为0.43cm~3/g.  相似文献   

11.
纳米多孔炭材料具有高的比表面积、良好的热稳定性和化学稳定性等优点,广泛应用于气体吸附、催化和电化学等领域.尽管目前已做了大量的工作,但是以自模板策略制备纳米多孔炭材料仍存在挑战.结构多样可裁的金属有机骨架(MOF)材料具有规则可调的孔径、高的孔隙率和比表面积等优点,已被证明是制备功能化纳米多孔炭材料的理想前驱体.本文综...  相似文献   

12.
本研究优化了制备高比表面积聚丙烯腈基多孔炭微球的KOH化学活化工艺,并系统讨论了活化条件对炭微球的孔体积和平均孔径的影响。活化条件的优化原理基于9个正交实验,主要讨论了活化温度、恒温时间以及碱碳质量比3个因素对比表面积的影响与显著性。极差分析和方差分析表明,3个因素对比表面积均具有高度显著的影响,且三者的影响程度有如下关系:活化温度恒温时间碱碳比。最佳活化工艺为:活化温度800℃,恒温时间4 h,碱碳比4∶1。由最佳活化工艺制备的聚丙烯腈基多孔炭微球的比表面积可由活化前的463 m~2g~(-1)显著提高至2 517 m~2g~(-1)。  相似文献   

13.
采用玉米芯为碳源,壳聚糖(CS)为氮源,800℃碳化并进一步通过CO_2活化制备了多孔碳材料。研究玉米芯/CS在不同质量比时对多孔碳材料的孔径分布,表面化学性质及气体吸附性能的影响。利用全自动气体吸附仪、扫描电镜、透射电镜和X射线光电子能谱分析仪对样品进行了孔隙结构和表面化学性质的表征。实验结果表明,所制备的多孔碳材料具有丰富的孔隙结构。当玉米芯/CS质量比为1∶15时,比表面积最大值达到702m~2/g,最大孔容为0.310cm~3/g,N掺杂量为1.59%,在常温常压下CH_4的吸附量达到36mg/g,CO_2吸附量达到117mg/g。  相似文献   

14.
制备PES/HA复合材料,红外光谱分析显示该复合材料主要是物理结合;以氯化铵为制孔剂,制备复合材料与制孔剂质量比为1∶0.25,1∶0.5,1∶0.75,1∶1的多孔复合材料。测定PES/HA孔结构复合材料吸水率。当复合材料与制孔剂质量比为1∶0.25时吸水率为40%。制孔剂含量比例越高,复合材料吸水率越高,当复合材料与制孔剂质量比为1∶1时PES/HA复合材料吸水率为88%。通过光学显微镜和电镜比较发现4组复合材料孔径多数分布在200~300μm之间,最小孔径约为40μm,最大孔径约为470μm;体外培养MG-63细胞,通过噻唑蓝(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltet razolium bromide,MTT)研究PES/HA复合材料对细胞毒性的影响,PES/HA复合材料毒性级别为I,该材料对MG-63细胞无毒性,这种细胞在PES/HA多孔材料表面和孔结构中粘附良好,细胞伸出多个伪足贴附在材料表面及孔壁上。  相似文献   

15.
高比表面椰壳活性炭和纳米级Pd/C催化剂的制备与表征   总被引:3,自引:0,他引:3  
以海南椰壳为原料,粉碎、过筛后,采用二步活化法制备活性炭.先500℃下碳化,然后以KOH为活化剂,炭碱质量比1∶2、1∶3、1∶4,炉温分别为700℃、800℃和900℃在氮气保护下活化.在炭碱比1∶4,活化温度800℃时,得到的活性炭比表面积高达3275m2/g.将得到的比表面积在1100~3200m2/g活性炭通过PdCl2超声浸渍法,水合肼还原制备纳米级钯炭催化剂,经SA、XRD、TEM等分析,得出比表面积越大,纳米钯粒子在活性炭上的分布越均匀,粒子颗粒越小.  相似文献   

16.
采用多元醇法制备镁-镍合金纳米粉末,并以此为催化剂制备纳米碳管,利用比表面和孔径分布测定仪、X射线衍射仪和透射电镜,研究镁-镍合金催化剂的性能和纳米碳管的生长模式。结果表明:Mg∶Ni值对镁-镍合金催化剂特性影响较大,其中Mg∶Ni为1的催化剂颗粒比表面积较大且平均粒径较小;聚乙烯吡咯烷酮(PVP)用量增大,有利于提高催化剂颗粒的比表面积、减小平均粒径,但用量过大不利于Mg2Ni合成。在以镁-镍合金为催化剂制备碳纳米管的过程中,首先在催化剂表面形成碳膜,随后形成的碳膜将前期形成的碳膜及催化剂颗粒向外推挤,催化剂颗粒移动后遗留下中空隧道,最终形成碳管,由于纳米碳管尖端的催化剂颗粒反应后失去催化活性,碳管的生长动力主要来自碳管根部。  相似文献   

17.
采用一步法直接制备磺酸基有序介孔炭材料,利用FT-IR、酸量、XRD、TEM和BET等对其结构与形貌进行表征,以苯甲醛与原甲酸三甲酯的缩醛反应为模型反应,并考察其催化性能。结果表明,在原料酚醛树脂∶硫酸∶F127质量比为1∶2∶0.3,炭化温度为600℃时,所制磺酸基介孔炭呈有序结构、较大的比表面积和均匀的孔径。采用上述条件合成介孔炭材料作催化剂时,反应收率可达87.1%,明显高于相同条件下传统分子筛固体酸催化剂HY与未加入磺酸基的介孔炭材料的催化效果。  相似文献   

18.
纳米多孔炭材料具有高的比表面积、良好的热稳定性和化学稳定性等优点,广泛应用于气体吸附、催化和电化学等领域。尽管目前已做了大量的工作,但是以自模板策略制备纳米多孔炭材料仍存在挑战。结构多样可裁的金属有机骨架(MOF)材料具有规则可调的孔径、高的孔隙率和比表面积等优点,已被证明是制备功能化纳米多孔炭材料的理想前驱体。本文综述了近年来MOF自模板炭化制备纳米多孔炭材料的研究进展,重点介绍以炭化不同的MOF-客体类型为途径获得的多孔炭材料。这将有助于进一步定向开发功能化的新型炭材料,以优化其在更广泛应用领域的性能。  相似文献   

19.
目的以壳聚糖和玉米淀粉为主要成膜基质,以纳米ZnO为添加剂,研究复合膜的相关结构和性能。方法采用溶液共混法将壳聚糖溶液、淀粉糊化液及纳米ZnO质均混合,然后流延成膜,分析壳聚糖/淀粉的质量比和纳米ZnO的含量对复合膜力学性能、水蒸气透过率(WVP)的影响,并通过红外光谱、扫描电镜、X射线衍射和热重分析对复合膜的相关结构进行表征。结果当壳聚糖/淀粉质量比为1∶1,纳米ZnO质量分数为9%时,所得膜在各自体系中的性能较佳。结论壳聚糖和淀粉二者之间具有较好的相容性,纳米ZnO的加入能增强复合膜的力学性能,降低其水蒸气透过率,并提高复合膜的热稳定性。  相似文献   

20.
为了提高纳米TiO2的稳定性,以TiCl4为前驱体,采用水解沉淀法在石棉尾矿酸浸渣表面负载纳米TiO2,制备纳米TiO2-石棉尾矿酸浸渣复合材料,并以罗丹明B为模拟降解物,研究水与酸浸渣质量比、反应液pH、反应时间等因素对复合材料光催化性能的影响,采用X射线衍射仪和扫描电子显微镜对复合材料进行表征。结果表明:在水与石棉尾矿酸浸渣的质量比为30∶1,pH为6,反应时间为1.5 h的优化条件下制备的复合材料,经800℃煅烧2 h后对罗丹明B的降解率为90.5%;复合材料呈现疏松多孔的松散形态,复合材料中纳米TiO2的平均晶粒度为20.9 nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号