首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
介绍了干氧和氢氧合成两种不同栅氧化方式下制作的 N沟输入 CMOS运算放大器电路的电离辐照响应特征 .并通过对电路内部单管特性损伤分析的比较 ,探讨了引起两者辐照敏感性差异的原因 .结果显示 ,氢氧合成工艺比干氧工艺损伤明显的原因 ,是因为 H的引入产生了更多的界面态 ,从而使其单管的跨导明显下降所致 .这表明 ,抑制辐照感生氧化物电荷尤其是界面态的增长 ,对提高电路的抗辐射特性至关重要 .  相似文献   

2.
本文报道了LF7650 CMOS运算放大器在4Mev、7Mev和30Mev三种不同质子能量辐照下的损伤特性和变化规律,并通过对其损伤机理的分析,探讨了引起电参数失效的机理。结果表明,由于质子辐照引起多数载波子迁移率的降低,导致MOSFET跨导下造成CMOS运放电路失效的主要原因,同时,比较了三种不同能量质子的辐照结果,表明电路的损伤与能量有一定的关系。  相似文献   

3.
介绍了在相同工艺条件下,N沟和P沟输入两种不同结构CMOS运算放大器电路的电离辐照响应规律及各子电路对电特性的影响情况.结果表明:由辐照感生的氧化物电荷引起的N沟镜像负载的不对称是导致P沟输入运放电特性衰降的主要机制;而由氧化物电荷和界面态引起的N沟差分对的漏电增大则是造成N沟输入运放电路性能变差的主要原因.  相似文献   

4.
不同结构CMOS运算放大器电路的电离辐射效应   总被引:1,自引:1,他引:0  
介绍了在相同工艺条件下 ,N沟和 P沟输入两种不同结构 CMOS运算放大器电路的电离辐照响应规律及各子电路对电特性的影响情况 .结果表明 :由辐照感生的氧化物电荷引起的N沟镜像负载的不对称是导致 P沟输入运放电特性衰降的主要机制 ;而由氧化物电荷和界面态引起的 N沟差分对的漏电增大则是造成 N沟输入运放电路性能变差的主要原因  相似文献   

5.
CMOS运算放大器电离辐照的后损伤效应   总被引:1,自引:0,他引:1  
陆妩  任迪远  郭旗  余学锋  张军  郑毓峰 《微电子学》2003,33(2):102-104,117
介绍了CMOS运算放大器经60CoY辐照及辐照后在不同温度下随时间变化的实验结果,并通过对差分对单管特性和电路内部各单元电路损伤退化的分析,探讨了引起电路“后损伤”效应的原因。结果表明,由辐照感生的氧化物电荷和界面态的消长及差分对管的不匹配,是造成电路继续损伤劣化的根本原因。对于CMOS运算放大器电路,在抑制辐照感生的氧化物电荷和界面态增长的同时,改善电路间的对称性和匹配性,对提高电路的抗辐射能力是至关重要的。  相似文献   

6.
肖本  吴玉广   《电子器件》2006,29(3):710-713,717
基于SOC应用,采用CSMC 0.5μm DPDM CMOS工艺,设计了一种恒定跨导的Rail-to-Rail CMOS运算放大器。该运算放大器采用平方根电路恒定输入级总跨导;同时运用Class AB推挽电路作输出级,获得高驱动能力和低谐波失真。在5 V单电源工作电压、30 pF负载电容和10 KΩ负载电阻情况下,经过Hspice仿真,运放的直流开环增益达到98 dB,相位裕度为65°,输入级跨导最大偏差低于17%。  相似文献   

7.
一种宽带恒定跨导轨对轨运算放大器的设计   总被引:1,自引:1,他引:0  
嵇楚  叶凡  任俊彦  许俊 《微电子学》2003,33(6):550-553
介绍了一种具有轨对轨输入功能的CMOS输入级电路。该电路克服了一般运算放大器只能工作在一定共模输入范围的输入级的缺陷,在各种共模输入电平下有着几乎恒定的跨导,使频率补偿更容易实现,且由于其工作原理与MOS晶体管的C—V解析关系无关,对制造工艺依赖性小,适用于深亚微米工艺。在此基础上,设计出了一种宽带的运算放大器,该运算放大器具有轨对轨输入、输出能力,可以作为常用模拟电路的基本单元模块。它没有严格的共模输入限制,跨导和整体性能稳定,适于为更大规模的数字/模拟混合信号系统提供行为级模型。  相似文献   

8.
一种低电压全摆幅CMOS运算放大器   总被引:4,自引:0,他引:4  
刘凯  邵丙铣 《微电子学》2002,32(1):51-53
提出了一种工作于 3 V电压、输入输出均为全摆幅的两级 CMOS运算放大器。为使放大器有较小的静态功耗 ,运算放大器的输入级被偏置在弱反型区 ;输出级采用甲乙类共源输出级 ,以达到输出电压的全摆幅。模拟结果显示 ,在 1 0 kΩ负载下 ,运算放大器的直流开环增益为 81 d B,共模抑制比 91 d B;在 3 p F电容负载下 ,其单位增益带宽为 1 .8MHz,相位裕度 5 9°  相似文献   

9.
一种3 V CMOS恒跨导运算放大器的设计   总被引:2,自引:0,他引:2  
提出了一种适合在3V电源电压下工作的CMOS运算放大器,其动态工作范围为0-3V,在整个工作范围内,运算放大器的跨导基本保持不变,给出了BSIM3V3模型下的Hspice模拟结果。  相似文献   

10.
产品的小型化需要低电压、低功耗的集成电路,CMOS技术可以将模拟和数字集成在一起,数字电路易满足要求,但模拟电路会产生许多问题,本文介绍低电压CMOD模拟集成运算放大器输入级所面临的问题以及解决的方法。  相似文献   

11.
研制了与 0 .5μm标准 CMOS工艺完全兼容的薄栅氧高压 CMOS器件 .提出了具体的工艺制作流程 -在标准工艺的基础上添加两次光刻和四次离子注入工程 ,并成功进行了流片试验 .测试结果显示 ,高压 NMOS耐压达到98V,高压 PMOS耐压达到 - 6 6 V .此结构的高压 CMOS器件适用于耐压要求小于 6 0 V的驱动电路 .  相似文献   

12.
研制了与0.5μm标准CMOS工艺完全兼容的薄栅氧高压CMOS器件.提出了具体的工艺制作流程-在标准工艺的基础上添加两次光刻和四次离子注入工程,并成功进行了流片试验.测试结果显示,高压NMOS耐压达到98V,高压PMOS耐压达到-66V.此结构的高压CMOS器件适用于耐压要求小于60V的驱动电路.  相似文献   

13.
双栅氧CMOS工艺研究   总被引:1,自引:2,他引:1  
双栅氧工艺(dual gate oxide)在高压CMOS流程中得到了广泛的应用,此项工艺可以把薄栅氧器件和厚栅氧器件集成在同一个芯片上.文章介绍了常用的两种双栅氧工艺步骤并分析了它们的优劣.在此基础上,提出了一种实现双栅氧工艺的方法.  相似文献   

14.
在表层硅厚度约6μmBESOI材料上,制备了Al栅CMOS器件。实验样品消除了纵向寄生结构和困扰SOI薄膜器件的背沟效应、边缘效应、Kink效应。样品未作抗辐照工艺加固,γ累积辐辐照剂量已达3×105rad(Si)。实验表明,该结构埋层SiO2的存在对器件的辐照性能影响不明显。  相似文献   

15.
文章对采用了埋层二氧化硅抗总剂量加固工艺技术的SOI器件栅氧可靠性进行研究,比较了干法氧化和湿法氧化工艺的栅氧击穿电荷,干法氧化的栅氧质量劣于湿法氧化。采用更敏感的12.5nm干法氧化栅氧工艺条件,对比采用抗总剂量辐射加固工艺前后的栅氧可靠性。抗总剂量辐射加固工艺降低了栅氧的击穿电压和击穿时间。最后通过恒压法表征加固工艺的栅氧介质随时间击穿(TDDB)的可靠性,结果显示抗总剂量辐射加固工艺的12.5nm栅氧在常温5.5V工作电压下TDDB寿命远大于10年,满足SOI抗总剂量辐射加固工艺对栅氧可靠性的需求。  相似文献   

16.
赵毅  万星拱 《半导体技术》2007,32(6):539-543
可靠性评价的结果可直接关系到一个工艺是否能投入实际生产,也可反应出工艺中存在的问题.随着工艺更新速度的加快,硅片级可靠性(WLR)测试应运而生,其核心任务就是快速有效地评价工艺的可靠性,并对工艺进行监控.本文介绍了CMOS器件栅极氧化膜的硅片级可靠性快速评价方法以及失效机理,并给出了0.18μm CMOS工艺硅片级可靠性评价的最新研究亮点.  相似文献   

17.
p+多晶硅栅中的硼在SiO2栅介质中的扩散会引起栅介质可靠性退化,在多晶硅栅内注入N+的工艺可抑制硼扩散.制备出栅介质厚度为4.6nm的p+栅MOS电容,通过SIMS测试分析和I-V、C-V特性及电应力下击穿特性的测试,观察了多晶硅栅中注N+工艺对栅介质性能的影响.实验结果表明:在多晶硅栅中注入氮可以有效抑制硼扩散,降低了低场漏电和平带电压的漂移,改善了栅介质的击穿性能,但同时使多晶硅耗尽效应增强、方块电阻增大,需要折衷优化设计.  相似文献   

18.
p+ 多晶硅栅中的硼在 Si O2 栅介质中的扩散会引起栅介质可靠性退化 ,在多晶硅栅内注入 N+ 的工艺可抑制硼扩散 .制备出栅介质厚度为 4 .6 nm的 p+栅 MOS电容 ,通过 SIMS测试分析和 I- V、C- V特性及电应力下击穿特性的测试 ,观察了多晶硅栅中注 N+工艺对栅介质性能的影响 .实验结果表明 :在多晶硅栅中注入氮可以有效抑制硼扩散 ,降低了低场漏电和平带电压的漂移 ,改善了栅介质的击穿性能 ,但同时使多晶硅耗尽效应增强、方块电阻增大 ,需要折衷优化设计 .  相似文献   

19.
为了改善深亚微米CMOS器件p+-poly栅中硼扩散问题,通过选择合适的注氮能量和剂量,采用多晶硅栅注氮工艺,既降低了硼在多晶硅栅电极中的扩散系数,又在栅介质内引入浓度适宜的氮,有效地抑制了硼在栅介质内的扩散所引起的平带电压漂移,改善了Si/SiO2界面质量,提高了栅介质和器件的可靠性,制备出了性能良好的4.6nm超薄栅介质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号