共查询到20条相似文献,搜索用时 0 毫秒
1.
Polycylic aromatic hydrocarbons (PAHs) are listed as carcinogenic and mutagenic priority pollutants, belonging to the environmental endocrine disrupters. Most PAHs in the environment stem from the atmospheric deposition and diesel emission. Consequently, the elimination of PAHs in the off-gases is one of the priority and emerging challenges. Catalytic oxidation has been widely used in the destruction of organic compounds due to its high efficiency (or conversion of reactants), its economic benefits and good applicability. This study investigates the application of the catalytic oxidation using Pt/γ-Al2O3 catalysts to decompose PAHs and taking naphthalene (the simplest and least toxic PAH) as a target compound. It studies the relationships between conversion, operating parameters and relevant factors such as treatment temperatures, catalyst sizes and space velocities. Also, a related reaction kinetic expression is proposed to provide a simplified expression of the relevant kinetic parameters. The results indicate that the Pt/γ-Al2O3 catalyst used accelerates the reaction rate of the decomposition of naphthalene and decreases the reaction temperature. A high conversion (over 95%) can be achieved at a moderate reaction temperature of 480 K and space velocity below 35,000 h−1. Non-catalytic (thermal) oxidation achieves the same conversion at a temperature beyond 1000 K. The results also indicate that Rideal–Eley mechanism and Arrhenius equation can be reasonably applied to describe the data by using the pseudo-first-order reaction kinetic equation with activation energy of 149.97 kJ/mol and frequency factor equal to 3.26 × 1017 s−1. 相似文献
2.
The adsorption of HCN on, its catalytic oxidation with 6% O 2 over 0.5% Pt/Al 2O 3, and the subsequent oxidation of strongly bound chemisorbed species upon heating were investigated. The observed N-containing products were N 2O, NO and NO 2, and some residual adsorbed N-containing species were oxidized to NO and NO 2 during subsequent temperature programmed oxidation. Because N-atom balance could not be obtained after accounting for the quantities of each of these product species, we propose that N 2 and was formed. Both the HCN conversion and the selectivity towards different N-containing products depend strongly on the reaction temperature and the composition of the reactant gas mixture. In particular, total HCN conversion reaches 95% above 250 °C. Furthermore, the temperature of maximum HCN conversion to N 2O is located between 200 and 250 °C, while raising the reaction temperature increases the proportion of NO x in the products. The co-feeding of H 2O and C 3H 6 had little, if any effect on the total HCN conversion, but C 3H 6 addition did increase the conversion to NO and decrease the conversion to NO 2, perhaps due to the competing presence of adsorbed fragments of reductive C 3H 6. Evidence is also presented that introduction of NO and NO 2 into the reactant gas mixture resulted in additional reaction pathways between these NO x species and HCN that provide for lean-NO x reduction coincident with HCN oxidation. 相似文献
3.
The reactivation of thermally sintered Pt/Al 2O 3 catalysts used in the simultaneous oxidation of CO and propene has been achieved by an oxychlorination treatment. The catalyst can be considered to model the active component of the catalytic converter fitted to diesel driven cars. Platinum crystallites redispersion was verified by XRD, H 2 chemisorption, TEM and FTIR. The extent of regeneration reflects the platinum particle redispersion achieved by such a treatment. Oxychlorination also introduced electronic effects in the Pt particle caused by the presence of chlorine at the Pt-Al 2O 3 interface but no detrimental result of this was observed in the oxidation reactions. The results indicate that the deactivation of the diesel oxidation catalysts (DOCs) can be reverted by this simple treatment resulting in a remarkable recovery of the catalytic activity. 相似文献
4.
Deactivation and regeneration of Pt/Al 2O 3 catalysts during the hydrodechlorination of carbon tetrachloride were studied. The effect of reactant partial pressures and temperature on the catalyst deactivation was investigated. A deactivation model with residual activity was developed to quantify the kinetic deactivation parameters. The effect of the regeneration atmosphere was also investigated. Regeneration under air allowed for the full recovery of the catalytic performance of fresh catalysts while treatments under flowing hydrogen resulted in a superior catalytic performance, increasing both the initial and residual activities. This was ascribed to a combined effect, redispersion of the metallic phase and formation of surface defects. 相似文献
5.
The present work has been undertaken to tailor Pt/Al 2O 3 catalysts active for NO oxidation even after severe heat treatments in air. For this purpose, the addition of Pd has been attempted, which is less active for this reaction but can effectively suppress thermal sintering of the active metal Pt. Various Pd-modified Pt/Al 2O 3 catalysts were prepared, subjected to heat treatments in air at 800 and 830 °C, and then applied for NO oxidation at 300 °C. The total NO oxidation activity was shown to be significantly enhanced by the addition of Pd, depending on the amount of Pd added. The Pd-modified catalysts are active even after the severe heat treatment at 830 °C for a long time of 60 h. The optimized Pd-modified Pt/Al 2O 3 catalyst can show a maximum activity limited by chemical equilibrium under the conditions used. The bulk structures of supported noble metal particles were examined by XRD and their surface properties by CO chemisorption and EDX-TEM. From these characterization results as well as the reaction ones, the size of individual metal particles, the chemical composition of their surfaces, and the overall TOF value were determined for discussing possible reasons for the improvement of the thermal stability and the enhanced catalytic activity of Pt/Al 2O 3 catalysts by the Pd addition. The Pd-modified Pt/Al 2O 3 catalysts should be a promising one for NO oxidation of practical interest. 相似文献
6.
Isomerization, dehydrocyclization and hydrocracking of C6 hydrocarbons on a commercial reforming PtAl 2O 3 catalyst were studied in a tubular reactor. The temperature was varied from 420 to 500°C, the pressure from 1.6 to 16 bar, the molar H 2/hydrocarbon inlet ratios from 1.5 to 20. Reaction rate equations of the Hougen—Watson type, corresponding to a bifunctional mechanism, were found to describe the experimental data. Parameter estimates for the reforming reactions were obtained by application of a generalized least square criterion to the calculated and observed production rates of the gas phase components. Electrobalance experiments showed that both the reforming reaction rates and the coking rate decrease exponentially with coke content. Multiplying the reaction rates with one common exponential deactivation function allowed the prediction of the observed conversions by one single set of kinetic parameters. The coking rate equation was derived by fitting the final coke content profiles obtained in the tubular reactor. The main contribution to coke formation was attributed to Me-cyclopentadienes. 相似文献
7.
A systematic mechanistic study of NO storage and reduction over Pt/Al 2O 3 and Pt/BaO/Al 2O 3 is carried out using Temporal Analysis of Products (TAP). NO pulse and NO/H 2 pump-probe experiments at 350 °C on pre-reduced, pre-oxidized, and pre-nitrated catalysts reveal the complex interplay between storage and reduction chemistries and the importance of the Pt/Ba coupling. NO pulsing experiments on both catalysts show that NO decomposes to major product N 2 on clean Pt but the rate declines as oxygen accumulates on the Pt. The storage of NO over Pt/BaO/Al 2O 3 is an order of magnitude higher than on Pt/Al 2O 3 showing participation of Ba in the storage even in the absence of gas phase O 2. Either oxygen spillover or transient NO oxidation to NO 2 is postulated as the first steps for NO storage on Pt/BaO/Al 2O 3. The storage on Pt/Ba/Al 2O 3 commences as soon as Pt–O species are formed. Post-storage H 2 reduction provides evidence that a fraction of NO is not stored in close proximity to Pt and is more difficult to reduce. A closely coupled Pt/Ba interfacial process is corroborated by NO/H 2 pump-probe experiments. NO conversion to N 2 by decomposition is sustained on clean Pt using excess H 2 pump-probe feeds. With excess NO pump-probe feeds NO is converted to N 2 and N 2O via the sequence of barium nitrate and NO decomposition. Pump-probe experiments with pre-oxidized or pre-nitrated catalyst show that N 2 production occurs by the decomposition of NO supplied in a NO pulse or from the decomposition of NOx stored on the Ba. The transient evolution of the two pathways depends on the extent of pre-nitration and the NO/H 2 feed ratio. 相似文献
8.
In this study, a novel bifunctional catalyst IrFe/Al 2O 3, which is very active and selective for preferential oxidation of CO under H 2-rich atmosphere, has been developed. When the molar ratio of Fe/Ir was 5/1, the IrFe/Al 2O 3 catalyst performed best, with CO conversion of 68% and oxygen selectivity towards CO 2 formation of 86.8% attained at 100 °C. It has also been found that the impregnation sequence of Ir and Fe species on the Al 2O 3 support had a remarkable effect on the catalytic performance; the activity decreased following the order of IrFe/Al 2O 3 > co-IrFe/Al 2O 3 > FeIr/Al 2O 3. The three catalysts were characterized by XRD, H 2-TPR, FT-IR and microcalorimetry. The results demonstrated that when Ir was supported on the pre-formed Fe/Al 2O 3, the resulting structure (IrFe/Al 2O 3) allowed more metallic Ir sites exposed on the surface and accessible for CO adsorption, while did not interfere with the O 2 activation on the FeO x species. Thus, a bifunctional catalytic mechanism has been proposed where CO adsorbed on Ir sites and O 2 adsorbed on FeO x sites; the reaction may take place at the interface of Ir and FeO x or via a spill-over process. 相似文献
9.
In the present work, a comparative study on the deactivation behavior of three types of industrial hydrotreating catalysts, namely, Mo/Al 2O 3, Ni–Mo/Al 2O 3 and Ni–MoP/Al 2O 3, that are used to promote primarily hydrodemetallization (HDM), hydrodesulphurization (HDS) and hydrodesulphurization + hydrodenitrogenation (HDS/HDN) reactions, respectively, in the first, second and third reactor of commercial atmospheric residue desulfurization (ARDS) units was carried out. The main objective of the study was to contribute to a better understanding of the relationship between catalyst type and catalyst deactivation patterns. The used catalysts from these experiments were fully characterized to determine the extent and the cause of deactivation. Special emphasis was paid to understanding the nature of the coke and metal deposition on the used catalysts by applying chemical analysis and various advanced analytical techniques, such as solid-state carbon-13 nuclear magnetic resonance spectroscopy ( 13C NMR), temperature-programmed oxidation (TPO), electron probe micro-analysis (EPMA), and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The results are discussed scientifically based on the physico–chemical properties of the three catalysts. 相似文献
10.
The deactivation of a novel catalyst during the production of a high-quality low-emission diesel component has been studied experimentally in a hydrotreating microplant. This process is compared with a commercial operation that used a conventional HDT catalyst. Catalysts were tested by incrementing temperature as a function of cycle length to keep the sulfur constant in the product, maintaining all other operating conditions constant. Spent catalysts were characterized using solid 13CNMR and XPS spectroscopy, pyridine adsorption, GC-MS of the coke extracted, and chemical analysis. Effective pore diffusivity was measured with pentane, and the catalyst activity and selectivity were measured with LCO and probe molecules to verify naphthenic ring opening capability. An important decline in hydrogenation and ring opening activity was detected along the cycle length due to acid site deactivation. The deactivation is attributed to LCO poly-aromatics adsorption on a particular type of acid site. A commercially deactivated HDT catalyst that operated with LCO presents a similar type of coke to that of the pilot plant. 相似文献
11.
A kinetic model was developed for the enantioselective hydrogenation of 1-phenyl-1,2-propanedione based on parallel racemic and enantioselective routes in the presence of cinchonidine. The Langmuir–Hinshelwood type of competitive adsorption approach was used in the model, which was combined with a batch reactor model. The proposed model could sufficiently describe the observed kinetic results. 相似文献
12.
The reduction of NO x by hydrogen under lean burn conditions over Pt/Al 2O 3 is strongly poisoned by carbon monoxide. This is due to the strong adsorption and subsequent high coverage of CO, which significantly increases the temperature required to initiate the reaction. Even relatively small concentrations of CO dramatically reduce the maximum NO x conversions achievable. In contrast, the presence of CO has a pronounced promoting influence in the case of Pd/Al 2O 3. In this case, although pure H 2 and pure CO are ineffective for NO x reduction under lean burn conditions, H 2/CO mixtures are very effective. With a realistic (1:3) H 2:CO ratio, typical of actual exhaust gas, Pd/Al 2O 3 is significantly more active than Pt/Al 2O 3, delivering 45% NO x conversion at 160 °C, compared to >15% for Pt/Al 2O 3 under identical conditions. The nature of the support is also critically important, with Pd/Al 2O 3 being much more active than Pd/SiO 2. Possible mechanisms for the improved performance of Pd/Al 2O 3 in the presence of H 2+CO are discussed. 相似文献
13.
Kinetics of autothermal reforming (ATR) of tetradecane on Pt-Al 2O 3 catalyst over the temperature range 750-900 °C is investigated. Experimental results obtained from NETL (US-DOE) are used for model parameter estimation and validation. Two Langmuir-Hinshelwood-Hougen-Watson (LHHW) type rate models are developed and subjected to parameter estimation and model discrimination. LHHW model in which hydrocarbon is adsorbed on the catalyst surface as alkyl intermediate species by scission of C-H bond gave physically meaningful parameters. Parameters are estimated by using generalized reduced gradient method in spreadsheet and sequential quadratic programming in Matlab. The estimated parameters for the selected model are thermodynamically consistent. The developed kinetic model could capture the experimental behavior of the process and could predict the outlet composition within 25% error. 相似文献
14.
The catalytic activity of Pt on alumina catalysts, with and without MnO x incorporated to the catalyst formulation, for CO oxidation in H 2-free as well as in H 2-rich stream (PROX) has been studied in the temperature range of 25–250 °C. The effect of catalyst preparation (by successive impregnation or by co-impregnation of Mn and Pt) and Mn content in the catalyst performance has been studied. A low Mn content (2 wt.%) has been found not to improve the catalyst activity compared to the base catalyst. However, catalysts prepared by successive impregnation with 8 and 15 wt.% Mn have shown a lower operation temperature for maximum CO conversion than the base catalyst with an enhanced catalyst activity at low temperatures with respect to Pt/Al 2O 3. A maximum CO conversion of 89.8%, with selectivity of 44.9% and CO yield of 40.3% could be reached over a catalyst with 15 wt.% Mn operating at 139 °C and λ = 2. The effect of the presence of 5 vol.% CO 2 and 5 vol.% H 2O in the feedstream on catalysts performance has also been studied and discussed. The presence of CO 2 in the feedstream enhances the catalytic performance of all the studied catalysts at high temperature, whereas the presence of steam inhibits catalysts with higher MnO x content. 相似文献
15.
This paper describes the investigations carried out on the kinetics of the vapour-phase ammoxidation of 3-methyl-pyridine to 3-cyanopyridine, over a Cr 2O 3 promoted V 2O 5Al 2O 3 catalyst. The reaction was carried out in a packed bed flow reactor at atmospheric pressure and in the temperature range 300–370°C. The data obtained in an integral reactor were interpreted by Langmuir-Hinshelwood mechanism, wherein the surface reaction between an adsorbed 3-methylpyridine molecule and an adsorbed oxygen atom was found to be the rate controlling step. The parameter values in the rate expression were estimated by non-linear regression analysis. The activation energy involved in this reaction was found to be 20.6 kcal/g mole. 相似文献
16.
The release and reduction of NO x in a NO x storage-reduction (NSR) catalyst were studied with a transient reaction analysis in the millisecond range, which was made possible by the combination of pulsed injection of gases and time resolved time-of-flight mass spectrometry. After an O 2 pulse and a subsequent NO pulse were injected into a pellet of the Pt/Ba/Al 2O 3 catalyst, the time profiles of several gas products, NO, N 2, NH 3 and H 2O, were obtained as a result of the release and reduction of NO x caused by H 2 injection. Comparing the time profiles in another analysis, which were obtained using a model catalyst consisting of a flat 5 nmPt/Ba(NO 3) 2/cordierite plate, the release and reduction of NO x on Pt/Ba/Al 2O 3 catalyst that stored NO x took the following two steps; in the first step NO molecules were released from Ba and in the second step the released NO was reduced into N 2 by H 2 pulse injection. When this H 2 pulse was injected in a large amount, NO was reduced to NH 3 instead of N 2. A only small amount of H2O was detected because of the strong affinity for alumina support. We can analyze the NOx regeneration process to separate two steps of the NOx release and reduction by a detailed analysis of the time profiles using a two-step reaction model. From the result of the analysis, it is found that the rate constant for NOx release increased as temperature increase. 相似文献
17.
Catalytic oxidation activity of carbon-black (CB) simulating the soot of diesel particulate matters to CO 2 over 3Pt/Al 2O 3, 3Pt5Mn/Al 2O 3 and 3Pt/30Ba–Al 2O 3 catalysts is investigated with model gases of diesel emission. In case of the large amount of CB compared to the amount of catalyst (3/1, w/w) in the mixture sample, insufficient oxygen at the point of sudden increase in the amount of CO 2 is leaded to the partial oxidation using the lattice oxygen of the catalyst. And the peaks of CO 2 after the first peak were attributed to the regional combustion of the CB, which was not in contact with catalyst particles. The fresh 3Pt5Mn was estimated to the oxidation states on the catalyst surface by XPS. For used sample at 700 °C, the BEs of Pt 4d5 was revealed to metallic state Pt(0) (314.4 eV) in a predominant levels compared with Pt(II) (317.3 eV). While BEs of Mn 2p were similar to that obtained from the fresh 3Pt5Mn. It is suggested that Pt is in charge of the roles in CB-oxidation, using the lattice oxygen of the catalyst. Two-stage catalytic system with the strategies of promoting the soot oxidation and NO x reduction, simultaneously, were composed of the CB oxidation catalyst and the diesel oxidation catalyst. The catalytic oxidation of CB was accelerated by activated oxidants and exothermic reaction resulted from the diesel oxidation catalyst, which lies in upstream of two-stage. But the system with the CB oxidation catalyst sited in the upstream showed the initiation of CB oxidation at a lower temperature than the other case. Two-stage catalytic system composed of 3Pt5Mn with CB in the upstream and DOC in the downstream showed high oxidation activity with 95% consumption rate of CB to the total loaded CB in the range of 100–500 °C during the TPR process. 相似文献
18.
Three different vanadium-modified Pd/Al 2O 3 catalysts were prepared and tested as catalysts for the deep oxidation of methane. Vanadium was added to the palladium catalyst by incipient wetness of palladium catalyst in order to modify its properties and improve its thermal stability and thioresistance. The behaviour of vanadium-modified catalysts depends on the concentration of this compound, being 0.5 wt.% the optimum amount. However, when strong catalyst poisons are present in the gas (SO 2), these modified catalysts do not show a better performance than unmodified catalyst. Bimetallic catalysts were tested with and without further reduction, being observed that reduced bimetallic catalysts perform worse than the non-reduced ones. 相似文献
19.
采用浸渍法制备了稀土镧和铈改性的CuNi/Al2O3催化剂,研究了稀土负载量对催化剂活性和选择性的影响,并研究了催化剂的还原性能。结果表明:La和Ce的存在均降低了活性相CuO和NiO的还原温度,使改性催化剂具有更高的催化活性,但催化剂上乙烯的选择性则是Ce改性催化剂高于La改性催化剂,NCeO2含量为l%时,CeCuNi/Al2O3催化剂上乙炔转化率达到98%,乙烯选择性和收率则分别达到84%和82.3%,比未改性的CuNi/Al2O3催化剂上乙烯收率高16.4%,显示出CeO2改性CuNi/Al2O3催化剂的优异性能。 相似文献
20.
In this work, a kinetic model is constructed to simulate sulfur deactivation of the NO x storage performance of BaO/Al 2O 3 and Pt/BaO/Al 2O 3 catalysts. The model is based on a previous model for NO x storage under sulfur-free conditions. In the present model the storage of NO x is allowed on two storage sites, one for complete NO x uptake and one for a slower NO x sorption. The adsorption of SO x is allowed on both of these NO x storage sites and on one additional site which represent bulk storage. The present model is built-up of six sub-models: (i) NO x storage under sulfur-free conditions; (ii) SO 2 storage on NO x storage sites; (iii) SO 2 oxidation; (iv) SO 3 storage on bulk sites; (v) SO 2 interaction with platinum in the presence of H 2; (vi) oxidation of accumulated sulfur compounds on platinum by NO 2. Data from flow reactor experiments are used in the implementation of the model. The model is tested for simulation of experiments for NO x storage before exposure to sulfur and after pre-treatments either with SO 2 + O 2 or SO 2 + H 2. The simulations show that the model is able to describe the main features observed experimentally. 相似文献
|