共查询到20条相似文献,搜索用时 0 毫秒
1.
为解决用单一特征无法保持在复杂环境下跟踪的鲁棒性以及粒子数量增多导致的算法效率低下的问题,选择多个特征融合的策略来保证跟踪的持续稳定,并自适应地调整每个特征的权值来适应环境的变化;为提高算法的实时性,采用自适应的粒子数量。实验结果表明:本文算法有效地解决了目标旋转、目标遮挡以及背景混淆等诸多问题,具有较高的鲁棒性。 相似文献
2.
基于联邦滤波算法,通过对状态方程有色噪声的拟合和预报,给出了含有有色噪声的联邦滤波融合算
法,并利用模拟数据进行了试算与比较。结果表明,基于含有有色噪声的联邦滤波算法在一定程度上能够提高
导航解的精度和可靠性。 相似文献
3.
跟踪机动目标的自适应α-β滤波算法 总被引:16,自引:0,他引:16
许录平 《西安电子科技大学学报(自然科学版)》1998,25(3):314-317
针对已有机动目标跟踪算法运算量大的不足,提出了一种新的自适应α-β滤波算法.该算法选用极坐标系作为跟踪坐标系,建立了带有伪加速度修正的目标运动模型及外推方程,给出了自适应获取滤波增益的一种新方法.仿真结果表明,该算法滤波精度与有代表性的IE算法、VD算法、IMM算法相当,但运算量则大大低于这几种算法,易于工程实现,可用于机动目标的快速跟踪. 相似文献
4.
为了更好地实现机动目标跟踪,在标准自适应滤波算法(Adaptive Filtering algo-rithm,简称AF)的基础上,提出了改进的自适应滤波算法(Improved Adaptive Filtering al-gorithm,简称IAF)。该算法将机动目标的系统误差做为随机噪声,并对加速度方差进行自适应调整。改进的自适应滤波算法具有计算简单、跟踪精度高等优点。 相似文献
5.
针对分层卷积特征目标跟踪算法实时性不足和单分类器对目标表观变化适应能力差的问题,提出多高斯相关滤波器融合的实时目标跟踪算法. 为了加快跟踪算法,提取VGG-19网络的Pool4和Conv5-3层的多通道卷积特征,通过稀疏采样减少卷积特征通道数;为了防止特征减少造成精确度下降,利用不同高斯分布样本训练多个相关滤波器,并对所有分类器预测的目标位置进行自适应加权融合,提高算法对目标姿态变化的鲁棒性;采用稀疏模型更新策略,进一步提高算法速度,使算法具有实时性. 在OTB100标准数据集上对算法进行测试,结果表明,该算法的平均距离精度为86.6%,比原分层卷积特征目标跟踪算法提高了3.5%,在目标发生遮挡、形变、相似背景干扰等复杂情况时具有较好的鲁棒性;平均跟踪速度为43.7帧/s,实时性更好. 相似文献
6.
对TLD跟踪算法进行改进,以提高在跟踪目标发生尺度变化或被遮挡时的跟踪性能. 首先使用KCF跟踪器替代TLD算法中原有的中值光流跟踪器,并在特征提取时增加目标的Lab颜色特征,在寻找目标位置时引入尺度估计,在模型更新阶段引入跟踪状态判别机制,通过设定跟踪器中输出响应最大值阈值、APCE阈值及检测器中随机蕨分类器阈值来判断跟踪器跟踪结果的可靠性,改善跟踪器在尺度变化、出现遮挡、光照变化等情况下的跟踪效果. 针对TLD算法中的检测器,为了减少大量无意义的窗口,提升算法在存在遮挡时的精确性,在检测之前使用Kalman滤波预估出目标位置,在预估位置周围使用改进的级联分类器更精准地定位目标,改进的级联分类器的前两级仍采用方差分类器和随机蕨分类器,第三级则采用改进的KCF跟踪器. 在OTB-50数据集上的实验结果分析表明,该算法跟踪性能优于其他算法,能够满足实时性. 相似文献
7.
为了提高粒子滤波的性能,使用集合卡尔曼滤波对建议分布进行改进,同时提出了用于视频跟踪的自适应融合模型.使用集合卡尔曼滤波结合当前的观测信息构造建议分布,结合当前观测信息对每一个粒子进行集合分析,得到新的建议分布,依据新的建议分布对粒子进行采样,同时在跟踪过程中将颜色特征模型和形状特征模型进行融合,并进行自适应更新.实验结果证明:相对于传统粒子滤波和扩展卡尔曼粒子滤波,使用新的建议分布可以更有效地降低均方根误差,同时自适应融合模型的稳定性要高于使用单一颜色模型.使用新的建议分布和融合模型,可以有效提高粒子滤波的准确性和稳定性. 相似文献
8.
针对实时视频中的运动物体跟踪问题,提出了一种基于自适应Kalman滤波的运动物体跟踪新算法。首先利用基于∑-△背景估计算法检测运动物体,并提取主要颜色特征。然后构建物体运动模型,并生成自适应Kalman滤波的系统状态模型。最后利用主要颜色特征进行物体跟踪,其结果反馈给自适应Kalman滤波器,并通过遮挡率自动调整参数达到正确跟踪。实验结果表明,所提出的自适应Kalman滤波算法在运动物体被遮挡等复杂条件下的鲁棒性好,还具有跟踪准确性高和数据计算量小等优点,可用于实时运动物体的检测与跟踪。 相似文献
9.
一种多机动目标协同跟踪的博弈论算法 总被引:1,自引:0,他引:1
针对传感器网络中的动态跟踪问题,提出一种基于博弈论的多机动目标协同跟踪算法.首先利用交互多模型扩展粒子滤波估计网络中每个机动目标的状态;然后以滤波过程中获得的目标信息增益为衡量标准,促使跟踪精度未达系统要求的目标的代理发起谈判,在保证谈判双方利益最大化的前提下,通过博弈为谈判发起者争取更多的传感器对其所代表的目标进行跟踪.仿真结果表明,在非线性非高斯环境下,该方法与传统方法相比能够有效提高跟踪精度,动态分配传感器资源以实现协同跟踪. 相似文献
10.
红外弱小目标检测跟踪问题具有重要的军事意义和广阔的应用前景,检测前跟踪算法是解决这一问题的有效途径。提出了一种基于Kalman滤波的检测前跟踪算法:首先对红外图像进行形态学top-hat算子滤波预处理;然后利用恒虚警率阈值提取单帧候选目标,并利用目标灰度模板进行灰度核密度估计,初步剔除大部分虚假目标,累积处理若干帧后,利用Kalman滤波器筛选出最优轨迹;最后依据一定的判断准则从当前帧候选目标中提取出真实目标。与一种典型的基于管道滤波的算法进行对比,仿真实验结果表明,该算法对目标运动速度和信噪比的变化有较强的适应能力,同时能用于目标遮挡或消失等情况。 相似文献
11.
针对视频中运动人体的跟踪,提出了一种基于均值偏移粒子滤波的自适应跟踪算法。该算法首先对所要跟踪的人体目标进行分块,并选择与周围环境颜色相似度最小的块模板作为跟踪区域;然后使用基于均值偏移的粒子滤波方法进行跟踪,并设计了自适应更新块模板尺度的方法;最后在粒子滤波的状态估计阶段后,加入自适应观测模型,根据块模板尺度的变化情况,自适应地选择高斯噪声方差和粒子数目。实验证明,在出现遮挡或人体运动方向改变的情况下,本文算法的跟踪效果比传统均值偏移粒子滤波更好。 相似文献
12.
一种基于粒子滤波的自适应相关跟踪算法 总被引:1,自引:0,他引:1
相关跟踪是最常见的一种目标跟踪方法,但传统相关跟踪采取的"峰值"跟踪方法抛弃了所有小于峰值点相关值的位置点的信息,不够稳健,受遮挡影响大,并且很难求解相关模板的仿射变形参数.提出了一种改进的非线性相关跟踪算法,以改进的灰度模板作为目标表示方式,粒子的权值与相关值成比例,目标状态的后验概率由粒子加权表示.模板更新时根据粒子权值进行自适应调节,对所有粒子所在位置的区域进行加权更新,权值大的粒子具有更高的更新系数,避免了仅利用单一峰值点处的模板进行更新可能造成的误差累计.该算法大大提高了跟踪与模板更新的鲁棒性,同时也是一种在仿射空间进行运动参数搜索的实用方法. 相似文献
13.
为使跟踪算法中的目标模型不被相同特征的背景像素所干扰,在粒子滤波的框架下引入多区域辨识性建模机制,提出1种新的鲁棒的目标跟踪算法。提出的算法侧重能够辨识前景与背景的最有效信息,把目标物体划分为多个子区域。通过统计子区域与背景类别的类内/类间特性选择出最具信息量的子区域。在选出的目标区域基础上,提出的算法以贝叶斯的方式同时考虑图像信息及空间信息,建立具有辨识性的目标表观模型,并在粒子滤波的更新阶段用以估量目标的所在区域。在一系列具有挑战性的视频序列上的实验结果证明了,在许多复杂场景下,提出的方法与传统的粒子滤波跟踪器相比的鲁棒性以及有效性。 相似文献
14.
通过对基于粒子滤波算法的运动目标跟踪技术进行研究,并针对粒子滤波算法的退化现象做出了两方面的调整。第一,对粒子滤波的重采样阶段做出了改进,在粒子上添加一个微小的高斯干扰,使得重采样的粒子分布发生变化,同时使采样枯竭得到了抑制;第二,经过一段时间的跟踪后,将跟踪目标重新初始化,继续跟踪,使得跟踪结果更加完善。通过自适应调整跟踪目标的窗口,使其大小改变,背景中的颜色尽量没有与跟踪目标相同的颜色。实验结果表明。这种改进过的粒子滤波算法能够在复杂的情况下进行跟踪,并且跟踪性能优于Meanshift方法。 相似文献
15.
在分析粒子滤波算法(PF)的基础上研究了一种改进的粒子滤波算法-无迹粒子滤波算法(UPF).UPF算法使用无迹卡尔曼滤波(UKF)算法产生重要密度函数.动态组织传感器网络节点成簇,将UPF算法和PF算法应用于无线传感器网络(WSNs)的目标跟踪,实现了对网络中做匀速直线运动的单个目标的跟踪.最后将UPF算法与PF算法进行比较.仿真结果表明,改进算法UPF滤波提高了粒子利用效率,精度更高,跟踪性能更好. 相似文献
16.
针对核相关滤波算法仅使用一种特征表达进行目标追踪,使其在一些场景中跟踪效果不佳的问题,提出了一种多特征融合的核相关滤波跟踪方法。采用31维的方向梯度直方图特征、58维的局部二值模式特征和1维的灰度特征进行融合。该算法选择在特征层进行特征融合,先将方向梯度特征和局部二值模式特征并联融合,再将融合后的特征串联融合灰度特征,形成新的特征表达。在OTB(Object Tracking Benchmark)数据集上进行了测试,结果表明,该算法具有更好的跟踪效果。 相似文献
17.
多传感器跟踪型数据滤波融合算法 总被引:3,自引:0,他引:3
在实际系统中,常用的数据融合方法是基于扩展的卡尔曼滤波法的融合算法,但是这种融合算法的跟踪精度并不是很高,通过对滤波跟踪数据融合的研究,提出了基于转换测量值卡尔曼滤波算法的非线性系统中的数据融合方法,研究表明,在利用激光干涉仪进行目标跟踪时,这种基于融合算法的集中式融合算法的跟踪性能优于分布式融合算法,但是,从仿真结果可以看出,两种融合算法的差别并不大,结果基本相同,因此,在非线性系统中,基于转换测量值卡尔曼滤波算法的分布融合算法可以重构集中式融合算法。 相似文献
18.
在核相关滤波目标跟踪算法中,为了克服采用单一特征导致的特征表达不足,以及采用线性插值模型更新策略造成模型漂移的问题,提出了一种自适应特征融合和模型更新的核相关滤波目标跟踪算法. 首先使用主成分分析法对方向梯度直方图特征和颜色名特征进行降维,以提高算法的运行速度; 其次计算两种特征的响应图,用所得响应图的峰值与平均峰值相关能量值的乘积来计算响应图权重,实现响应图的加权融合,从而获得目标位置; 最后根据两帧间颜色名特征的相似度调整模型更新速率. 在OTB-50数据集上的实验结果分析表明,该算法跟踪性能优于其他算法,能够提高处理速度. 相似文献
19.
为了使用融合效果最好的算法,设计了一种融合算法测试平台,在平台上分别对采用Bayes理论和D—S证据理论算法的目标身份识别情况进行了定量分析,结果证明该平台能根据评估指标区分出融合算法的优劣,可以作为算法选择的工具,具有一定的实用价值. 相似文献
20.
针对无线传感器网络环境下目标跟踪问题,提出一种基于分布式并行粒子滤波的目标跟踪方法.在建立了网络动态分簇模型和目标运动模型的基础上,将并行粒子滤波算法应用于动态目标进行跟踪.算法通过多个感知节点并行的运行局部粒子滤波器,得到每个节点对目标状态的估计,动态成簇的簇头节点对簇内每个节点的信息进行融合,形成动态目标的状态估计... 相似文献