首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogels, composed of poly(acrylamide‐co‐maleic acid) were synthesized and the release of vitamin B2 from these gels was studied as a function of the pH of the external media, the initial amount of the drug loaded, and the crosslinking ratio in the polymer matrix. The gels containing 3.8 mg of the drug per gram gel exhibit almost zero‐order release behavior in the external media of pH 7.4 over the time interval of more than their half‐life period (t1/2). The amount of the drug loaded into the hydrogel also affected the dynamic release of the encapsulated drug. As expected, the gels showed a complete swelling‐dependent mechanism, which was further supported by the similar morphology of the swelling and release profiles of the drug‐loaded sample. The hydrophilic nature of the drug riboflavin does not contribute toward the zero‐order release dynamics of the hydrogel system. On the other hand, the swelling osmotic pressure developed between the gels and the external phase, due to loading of the drug by equilibration of the gels in the alkaline drug solution, plays an effective role in governing the swelling and release profiles. Finally, the minimum release of the drug in the swelling media of pH 2.0 and the maximum release with zero‐order kinetics in the medium of pH 7.4 suggest that the proposed drug‐delivery devices have a significant potential to be used as an oral drug‐delivery system for colon‐specific delivery along the gastrointestinal (GI) tract. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1133–1145, 2002; DOI 10.1002/app.10402  相似文献   

2.
Copolymeric hydrogels of poly(acrylamide‐co‐monomethyl itaconate) (A/MMI) crosslinked with N,N′‐methylenbisacrylamide (NBA) were synthesized as devices for the controlled release of bupivacaine (Bp). Two compositions of the copolymer, 60A/40MMI and 75A/25MMI, were studied. A local anesthetic was included in the feed mixture of polymerization (2–8 mg Bp/tablet) and by immersion of the copolymeric tablets in an aqueous solution of the drug. A very large amount of Bp (36–38 mg Bp/tablet) was included in the gels by sorption due to interactions between the drug and the side groups of the hydrogels. Swelling and drug release were in accordance with the second Fick's law at the first stages of the processes. The swelling behavior of these copolymers depended on the pH of the medium. The equilibrium swelling degree (W) was larger at pH 7.5 (W ≈ 90 wt %) than at pH 1.5 (W ≈ 52–64 wt %) due to the ionization of the side groups of the copolymer. Release of the drug also depended on the pH of the swelling medium; at pH 7.5, about 60% of the included drug was released, and at pH 1.5, about 80% was released. Bp release was controlled by the comonomer composition of the gels, their drug‐load, and the pH of the swelling medium. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 327–334, 2002  相似文献   

3.
New variety of pH‐sensitive hydrogels, having macroporous interior with honey‐comb type architecture and continuous skin at the surface, have been developed by single step aqueous copolymerization of acrylic acid (AAc) and N‐[3‐(dimethylamino)propyl]‐methacrylamide (DMAPMA) in different feed ratios at 41 ± 1°C. Interlocked nanogels of ~ 300 nm were identified as the building blocks in all of these cylindrical poly(AAc‐co‐DMAPMA) matrices (PDMAAc). The gels showed good compressive strength even at a swelling as high as 4330% (mass) at pH 7.0. Morphology of McCoy fibroblast cell line remained unchanged in direct contact with different PDMAAc gels, and cell viability (±SD) was recorded to be in the range of 105 (±3)% to 87 (±8)% after 72 h. Bovine serum albumin (BSA) loaded gels were prepared by means of equilibrium partitioning. Loading efficiency of PDMAAc gels has been found to be in the range of 210–277 mg/g dry gel. BSA release from PDMAAc gels at 37°C has been found to follow non‐Fickian diffusion mechanism in simulated gastric juice (pH 1.2), and Case II transport in simulated intestinal juice (pH 7.4). In vitro study showed that the gels are capable of retaining >95% of the loaded BSA in gastric medium through average gastric emptying period. Again, ~ 56% BSA release was recorded in 24 h at pH 7.4, indicating prolonged BSA diffusion in intestinal condition. Constant rate of BSA diffusion was reflected from the release profiles at both the pH. Diffusion exponents also supported the same and indicated for absolute zero‐order kinetics at pH 7.4. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
This study focused on a detailed investigation of the release of the nonsteroidal anti‐inflammatory drug diclofenac sodium from strong anion resin particles, entrapped in ionotropically crosslinked alginate beads, in simulated gastric and intestinal fluids at 37°C. The percentage drug released from the beads in media of various pH values in 6 h was nearly 68.8 ± 2.6%, whereas, for the same duration, the drug–resin complex particles released 87.6 ± 3.2% drug. The amount of drug released from the beads depended on the composition of the beads, their degree of crosslinking, and the size of the crosslinker ions. Finally, the value of the release exponent was found to be 0.56, which thus indicated the diffusion‐controlled mechanism of drug release from the alginate beads © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Two series of pH‐sensitive semi‐interpenetrating network hydrogels (semi‐IPN) based on chitosan (CS) natural polymer and acrylamide (AAm) and/or N‐hydroxymethyl acrylamide (HMA) monomers by varying the monomer and CS ratios were synthesized by free radical chain polymerization. 5‐Fluorouracil (5‐FU), a model anticancer drug, has been added to the feed composition before the polymerization. The characterization of gels indicated that the drug is molecularly dispersed in the polymer matrix. The swelling kinetics of drug‐loaded gels have decreased with increased HMA content at 37°C in both distilled water and buffer solutions with a pH of 2.1 or 7.4. Elastic modulus of the gels increased with the increase in HMA content and higher CS concentration enhanced the elastic modulus positively. Moreover, cumulative release percentages of the gels for 5‐FU were ca. 10% higher in pH 2.1 than those in pH 7.4 media. It was determined that they can be suitable for the use in both gastric and colon environments. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41886.  相似文献   

6.
Imprinted polymers are now being increasingly considered for active biomedical uses such as drug delivery. In this work, the use of molecularly imprinted polymers (MIPs) in designing new drug delivery devices was studied. Imprinted polymers were prepared from methacrylic acid (MAA) (functional monomer), ethylene glycol dimethacrylate (cross‐linker), and dipyridamole (DIP) (as a drug template) using precipitation polymerization method. The influence of the template/functional monomer proportion and pH on the achievement of MIPs with nanopore cavities with a high enough affinity for the drug was investigated. The small pores (average 3.9 nm) in the imprinted microspheres show excellent retention properties for the target analyte. The polymeric devices were further characterized by FT‐IR, thermogravimetric analysis, scanning electron microscopy, photon correlation spectroscopy, Brunauer‐Emmett‐Teller analysis, and binding experiments. The imprinted polymers showed a higher affinity for DIP and a slower release rate than the nonimprinted polymers. The controlled releases of DIP from the prepared imprinted polymers were investigated by an in vitro dissolution test by measuring the absorbance at 284 nm by means of a UV–Visible spectrophotometer. Loaded imprinted microsphers showed very slow release in various solutions such as phosphate buffer solution (pH 6.8), HCl (pH 1.0) and mixture of HCl and MeOH at 37.0 ± 0.5°C and were able to prolong DIP release for more than two days. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Thermoresponsive and pH‐responsive gels were synthesized from N‐isopropyl acrylamide (NIPA) and N,N′‐dimethyl aminoethyl methacrylate (DMAEMA) monomers. Gelation reactions were carried out with both conventional free‐radical polymerization (CFRP) and controlled free‐radical polymerization [reversible addition fragmentation transfer (RAFT)] techniques. The CFRP gels were prepared by polymerizing mixtures of NIPA and DMAEMA in 1,4‐dioxane in presence of N,N'‐methylene bisacrylamide (BIS) as cross‐linker. The RAFT gels were prepared by a the polymerization of NIPA via a similar process in the presence of different amounts of poly(N,N′‐dimethyl aminoethyl methacrylate) macro chain‐transfer agent and the crosslinker. These gels were characterized by scanning electron microscopy (SEM) and differential scanning calorimetry. SEM analysis revealed a macroporous network structure for the RAFT gels, whereas their volume phase‐transition temperatures (VPTTs) were found to be in the range 32–34°C, close to that of poly(N‐isopropyl acrylamide) gels. However, the CFRP copolymer gels exhibited a higher VPTT; this increased with increasing DMAEMA content. The RAFT gels exhibited higher swelling capabilities than the corresponding CFRP gels and also showed faster shrinking–reswelling behavior in response to changes in temperature. All of the gels showed interesting pH‐responsive behavior as well. The unique structural attributes exhibited by the RAFT gels can potentially open up opportunities for developing new materials for various applications, for example, as adsorbents or carrier of drugs or biomolecules. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42749.  相似文献   

8.
This work describes initial efforts to incorporate affinity ligands within an environmentally responsive hydrogel. Metal affinity ligands were chosen as model affinity groups and thermally responsive N‐isopropyl acrylamide/acrylamide copolymers were used as the base hydrogels. The ? NH2 group of the acrylamide serves as a reactive group for functionalization with metal affinity ligands. The gels were synthesized by free radical polymerization and Cu2+ was bound to the gel via 1,4‐butanediol diglycidyl ether (BDE) as a linker and iminodiacetic acid (IDA) as a chelating ligand. The base acrylamide gels were also functionalized with metal affinity ligands to allow for comparison with thermally responsive affinity gels. The results show the effectiveness of this technique for both these types of gels, and an improved method to immobilize metal affinity groups on to thermally sensitive N‐isopropyl acrylamide gels was also developed. It was seen that the yields for the reaction with BDE decreased with increased reaction time in both kinds of gels, whereas reaction with IDA showed a decrease in yields with increase in temperature for N‐isoporpyl acrylamide gels and increase in yields for acrylamide gels. Further techniques were developed to overcome diffusional resistances and stresses in the thermally responsive N‐isopropyl acrylamide gels so as to improve the distribution of Cu2+ ions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
The enzymatic degradation mechanism of semi‐interpenetrating network (semi‐IPN) hydrogel of poly (acrylic acid‐acrylamide‐methacrylate) crosslinked by azocompound and amylose in vitro was investigated in the presence of Fungamyl 800L (α‐amylase) and rat cecum content (cecum bacteria). The degradation mechanism involves degradable competition, i.e., reduction of azo crosslinkage is dominant in the earlier period of degradation. Subsequently, the degradation of gels is continued by combination of reduction of azo crosslinkage and hydrolysis of amylose. The cumulative release ratios of Bovine serum albumin (BSA, as a model drug) loaded semi‐IPN gels are 25% in pH 2.2 buffer solutions and 74% in pH 7.4 buffer solutions within 48 h. Moreover, the release behavior of BSA from the semi‐IPN gels indicates that it follows Fickian diffusion mechanism in pH 2.2 media and non‐Fickian diffusion and polymer chains relaxation mechanism in pH 7.4 media. The results indicate that the release of BSA from the semi‐IPN gels was controlled via a combined mechanism of pH dependent swelling and specificity to enzymatic degradation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

10.
In this work, a novel slow release fertilizer contained 14.98% nitrogen was prepared via free radical polymerization of acrylic acid, acrylamide, and bentonite in the presence of cross‐linker (N,N′‐methylenebis acrylamide), initiator (potassium persulfate), and nutrient source (urea). The samples were analyzed using a Fourier transform infrared spectrometer, X‐ray diffraction, Scanning electron microscopy, Thermogravimetric analysis, and Brunauer, Emmett and Teller analysis. Results showed that the swelling and release behaviors were strongly dependent on the type and concentration of salt solution added to the medium, pH levels of the solutions, and temperature. Moreover, the experimental data indicated that the addition of Bent not only improved water absorbency and water retention capacities but also controlled the release of nutrients. The release kinetic simulation analysis findings showed that the release of urea was predominated by a Case II release mechanism with skeleton erosion. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43082.  相似文献   

11.
In this work, we report the synthesis and characterization of poly(butyl monoitaconate‐co‐acrylamide) hydrogels to be used as drug release agents. Four isomers of butanol were used to synthesize the hydrogels. The influence of butyl monoitaconate isomery on swelling behavior, Young's and compression moduli, cross‐linking density and molar mass between cross‐links are reported. It was found that by increasing butyl ramification, equilibrium degree of swelling, and the time for reaching swelling equilibrium decreases. Cross‐linking density, Young's and compression moduli increases as butyl ramification increases. The release of theophylline and aminophylline drugs used in therapy for respiratory diseases were studied and it was found that theophylline was released faster than aminophylline © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Three series of thermosensitive copolymeric hydrogels were prepared from [3‐(methacryloyloxy)propyl]trimethoxysilane (MPTMOS), [2‐(methacryloyloxy)ethoxy]trimethylsilane (METMS), and (methacryloyloxy)trimethylsilane (MTMS), referred to as the silane monomer, and N‐isopropylacrylamide (NIPAAm) by solution polymerization. The influence of the structures and amounts of silane monomers on the swelling and drug‐released behaviors were studied. The results showed that, because of the hydrophobicity of the silyl group, the more silane monomers in the copolymeric hydrogels the lower was the swelling ratio of the gels. The hydrophobicity of the silyl group affected the swelling mechanism, which resulted from the non‐Fickian diffusion for the gels. The copolymeric gels clearly exhibited gel transition temperatures. The copolymeric hydrogels could be applied to a drug‐release and drug‐delivery system. The delivery amount would approach a steady state after three cycle operations of delivery. The gels also showed an on–off switch behavior on drug release depending on the temperature, and the gels released more CV with the gels in a swollen state. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2523–2532, 2002  相似文献   

13.
A new kind of pH and temperature responsive poly(acrylamide‐co‐itaconic acid) hydrogel was prepared by free radical polymerization using ammonium persulfate as initiator and different comonomer ratios. The hydrogels were characterized in terms of chemical composition, swelling‐deswelling behavior, morphology, crystallographic behavior, and drug release properties. All the hydrogels showed high swelling ability in aqueous solutions, the maximum being at pH 7. Swelling decreased on either side of pH 7 (i.e., both in acidic and alkaline region) and increased with increase in temperature. The hydrogel with 10 mol% itaconic acid (IA) absorbed maximum water among the copolymer gels. The cellular structures of the hydrogels were clearly revealed by microscopic analysis and SEM pictures. Swelling of the gels in water followed non‐Fickian type of diffusion principle. The hydrogel was proved to be a controlled release vehicle, for example in drug delivery by using its smart properties. The hydrogel with 10 mol% IA also absorbed maximum amount of drug (ascorbic acid) under study. Incorporation of drug in hydrogel matrix was established from XRD peak analysis. POLYM. ENG. SCI., 55:113–122, 2015. © 2014 Society of Plastics Engineers  相似文献   

14.
In this study, pH responsive polymers composed of methacrylic acid, acrylamide, and N‐hydroxyethyl acrylamide were synthesized by free radical polymerization technique. The characterization was done with Fourier transform infrared spectroscopy and scanning electron microscopy. The swelling and drug release behavior of the hydrogels was determined as a function of time at 37°C in pH 2.1 and 7.4. The swelling and drug release studies showed that increased methacrylic acid amount caused a higher increase in swelling and drug release values at pH 7.4 than those at pH 2.1. In addition, the drug release data were applied to kinetic models such as zero order, first order, and Higuchi equations, and it fit well in the Higuchi model of the hydrogel. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43226.  相似文献   

15.
A series of pH‐thermoreversible hydrogels that exhibited volume phase transition was synthesized by various molar ratios of N‐isopropylacrylamide (NIPAAm), acrylamide (AAm), and 2‐hydroxyethyl methacrylate (HEMA). The influence of environmental conditions such as temperature and pH value on the swelling behavior of these copolymeric gels was investigated. Results showed that the hydrogels exhibited different equilibrium swelling ratios in different pH solutions. Amide groups could be hydrolyzed to form negatively charged carboxylate ion groups in their hydrophilic polymeric network in response to an external pH variation. The pH sensitivities of these gels also depended on the AAm content in the copolymeric gels; thus the greater the AAm content, the higher the pH sensitivity. These hydrogels, based on a temperature‐sensitive hydrogel, demonstrated a significant change of equilibrium swelling in aqueous media between a highly solvated, swollen gel state and a dehydrated network response to small variations of temperature. pH‐thermoreversible hydrogels were used for a study of the release of a model drug, caffeine, with changes in temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 221–231, 1999  相似文献   

16.
Polymeric blend microspheres of poly(vinyl pyrrolidone) (PVP) with sodium alginate (NaAlg) were prepared by cross‐linking with calcium ions and used to deliver a calcium channel blocker drug, diltiazem hydrochloride (DT). The prepared microspheres were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Scanning electron microscopy confirmed the spherical nature of the particles. Preparation conditions for the microspheres were optimized by considering the percentage entrapment efficiency, particle size, and swelling capacity. Effects of variables such as PVP/NaAlg ratio, molecular weight of PVP, cross‐linker concentration, and drug/polymer ratio on the release of DT were discussed at two different pH values (1.2, 6.8) at 37°C. It was observed that DT release from the microspheres decreased with increasing molecular weight of PVP and extent of cross‐linking. However, DT release increased with increasing PVP content and drug/polymer ratio (d/p) of the blend microspheres. The highest DT release percentage was obtained as 99% for PVP/NaAlg ratio of 1/2 with d/p ratio of 1/2 at the end of 4 h. It was also observed from release results that DT delivery from the microspheres through the external medium are much higher at low pH (1.2) value than that of high pH (6.8) value. The drug release from the microspheres mostly followed Fickian transport. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
以丙烯酰胺、丙烯酸和双丙酮丙烯酰胺为原料,以N,N'-亚甲基双丙烯酰胺为交联剂,2-酮戊二酸为引发剂,采用光引发聚合方法制备出系列新型温度和pH响应型水凝胶。考察了交联剂用量、水凝胶组成、温度和pH值对凝胶溶胀性能的影响。结果表明,随交联剂用量的增加,凝胶的溶胀率减小,随凝胶组成中AA含量的增加,凝胶的溶胀率增加。凝胶的溶胀率随温度的升高而减小,随pH值的增大而增加,表现出显著的温敏和pH敏感性。  相似文献   

18.
In this study, acrylamide (AAm) was grafted onto poly(vinyl alcohol) (PVA) in solution with UV radiation, and membranes were prepared from the graft copolymer (PVA‐g‐AAm) for transdermal release of salicylic acid (SA) at in vitro conditions. Permeation studies were carried out using a Franz‐type diffusion cell. Release characteristics of SA through PVA and PVA‐g‐AAm membranes were studied using 2.0 mg/mL SA solutions. Effects of the presence of AAm in the copolymer, pH of donor and acceptor solution, and concentration of SA and temperature on the release of SA were investigated. Permeation of SA through the membranes was found to be pH‐dependent, and increase in pH generally increased the release percentage of SA, and the presence of AAm in the membrane positively affected the permeation. The effect of concentrations of SA on the permeation was also searched using saturated solution of SA, and permeated amount of SA was found to be less than in the case of unsaturated SA solution. Studies showed that the release of SA from PVA‐g‐AAm membranes was temperature‐sensitive and increase in temperature increased the permeation rate. 82.76% (w/w) SA was released at the end of 24 h at (39 ± 1)°C, and the overall activation energy for the permeation of SA through PVA‐g‐AAm membranes was found to be 19.65 kJ/mol. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Degradation on polyacrylamides. Part II. Polyacrylamide gels   总被引:2,自引:0,他引:2  
The stability of polyacrylamide (PAAm) gels, synthesized by free radical polymerization of acrylamide (AAm) and N,N′-methylenebisacrylamide (BIS), was investigated when subjected to thermal and irradiation conditions. The PAAm gels were stable and did not release AAm under fluorescent light. In aqueous solution at 95 °C, a small amount of AAm was observed and it is shown that this is found from the pendant unsaturation of BIS in the gel network. Under UV irradiation, approximately one molecule of AAm is released for every 20,000 repeat monomer units in the gel. Gels were also synthesized from methacrylamide with BIS, AAm with N,N′-methylenebismethacrylamide and AAm with bisacryloyl-piperazine. Their stability is compared to the AAm/BIS gels.  相似文献   

20.
2‐Hydroxyethyl methacrylate was copolymerized with acrylamide, N‐vinyl‐2‐pyrrolidone, and n‐butyl methacrylate by free‐radical solution polymerization with α,α′‐azobisisobutyronitrile as an initiator at 70 ± 1°C. The average molecular weights and molar compositions of the resultant copolymers were determined with gel permeation chromatography and 1H‐NMR spectroscopy data, respectively. Diclofenac or 2‐[(2,6‐dichlorophenyl)amino]benzene acetic acid, a nonsteroidal anti‐inflammatory drug, was chemically attached to the copolymers by transesterification reaction in the presence of N,N′‐dicyclohexylcarbodiimide to give macromolecular prodrugs. All the synthesized polymers were characterized with Fourier transform infrared, 1H‐, and 13C‐NMR spectroscopy techniques. The polymer–drug conjugates were hydrolyzed in cellophane member dialysis bags containing aqueous buffered solutions (pH 8) at 37°C, and the hydrolysis solutions were detected by UV spectrophotometer at selected intervals. The results showed that the drug could be released by selective hydrolysis of the ester bond from the side chain of the drug moiety. The release profiles of the drug indicated that the hydrolytic behavior of polymeric prodrugs strongly depends on the hydrophilicity of the polymer. The results suggest that the synthesized copolymers could be useful carriers for the release of diclofenac in controlled‐release systems. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2403–2409, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号