首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用神经网络和滑模控制,研究带有饱和输入的一类非线性系统。为了便于问题分析,引入饱和约束模型输出与控制输入的差值这个变量,分5种情况讨论,求得神经网络权值的在线调节律,得到保证闭环系统稳定的控制律。利用Lyapunov函数,证明了闭环系统的稳定性;仿真实验说明了算法的有效性。  相似文献   

2.
本文针对一类执行器受Preisach磁滞约束的不确定非线性系统, 提出一种基于神经网络的直接自适应控制 方案, 旨在解决系统的预定精度轨迹跟踪问题. 由于Preisach算子与系统动态发生耦合, 导致算子输出信号不可测 量, 给磁滞的逆补偿造成了困难. 为解决此问题, 本文首先将Preisach模型进行分解, 以提取出控制命令信号用于 Backstepping递归设计, 并在此基础上融合一类降阶光滑函数与直接自适应神经网络控制策略, 形成对磁滞非线性 和被控对象非线性的强鲁棒性能, 且所设计方案仅包含一个需要在线更新的自适应参数, 同时可保证Lyapunov函数 时间导数的半负定性. 通过严格数学分析, 已证明该方案不仅保证闭环系统所有信号均有界, 而且输出跟踪误差随 时间渐近收敛到用户预定区间. 基于压电定位平台的半物理仿真实验进一步验证了所提出控制方案的有效性.  相似文献   

3.
In this article, the adaptive tracking control problem is considered for a class of uncertain nonlinear systems with input delay and saturation. To compensate for the effect of the input delay and saturation, a compensation system is designed. Radial basis function neural networks are directly utilized to approximate the unknown nonlinear functions. With the aid of the backstepping method, novel adaptive neural network tracking controllers are developed, which can guarantee all the signals in the closed‐loop system are semiglobally uniformly ultimately bounded, and the system output can track the desired signal with a small tracking error. In the end, a simulation example is given to illustrate the effectiveness of the proposed methods.  相似文献   

4.
5.
一类非线性离散时间系统的模糊辨识   总被引:1,自引:1,他引:0       下载免费PDF全文
对一类非线性离散时间系统提出了模糊辨识方法,此方法用与未知参数向量成线性关系的模糊逻辑系统作为辨识模型,并通过自适应学习律对此模糊逻辑系统中的未知参数进行自适应调节,文中证明了此方法可使辨识误差收敛到原点的一个邻域内。仿真结果验证了此方法的有效性。  相似文献   

6.
本文考虑一类不确定非线性系统的自适应观测器设计问题.系统的不确定性不能参数化,这类非线性系统的观测器无法用传统方法设计.首先用神经网络对系统的不确定性进行逼近,然后利用神经网络的基函数向量对系统进行滤波变换,再由此构造自适应观测器.给出了观测误差估计.本文结果表明适当选定神经网络的逼近精度和调整观测器的设计参数可使观测误差任意地小.  相似文献   

7.
This article is concerned with the global stabilization problem of a family of feedforward nonlinear time‐delay systems whose linearized system consists of multiple distinct oscillators. To fully utilize the delayed information and maintain the state decoupling property in the controller design, the considered nonlinear feedforward system is first transformed into a new system which contains time delays in both its input and states based on a novel model transformation containing time delays, and then the stabilizing saturated controller for the transformed system is designed based on the recursive design method. Meanwhile, explicit stability conditions are also provided. When the linearized system is a cascade of multiple oscillators and multiple integrators, a modified saturated feedback control utilizing not only the current state but also the delayed state is also established for the corresponding global stabilization problem. Two examples, including a practical one, are given to show the effectiveness and superiority of the proposed approaches.  相似文献   

8.
提出一种基于T-S模型的非线性系统模糊聚类辨识方法,对T-S模糊模型的前提部分和结论部分进行分开辨识,既简化该模型的辨识步骤,又提高它的泛化能力,同时也解决了T-S模糊模型随辨识系统复杂程度提高而规则数增大的问题。对一个非线性系统辨识的仿真结果验证了这种模糊聚类辨识方法的有效性。  相似文献   

9.
对一类非线性离散时间系统提出一种新的模糊的辨识方法。该方法在假设逼近误差界已知的情况下,基于死区函数对模糊逻辑系统中的未知参数设计自适应学习律;在逼近误差界未知的情况下,基于时变死区函数对模糊逻辑系统中的未知参数设计自适应学习律,并对时变死区进行自适应调节。证明了所设计的自适应学习律均可使辨识误差收敛到原点的一个小邻域内。仿真结果表明了该算法的有效性。  相似文献   

10.
This paper considers the problem of output feedback stabilization for a class of stochastic feedforward nonlinear systems with input and state delay. Under a set of coordinate transformations, we first design a linear output feedback controller for a nominal system. Then, with the aid of feedback domination technique and an appropriate Lyapunov–Krasovskii functional, it is proved that the proposed linear output feedback controller can drive the closed‐loop system globally asymptotically stable in probability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In addressing the adaptive neural backstepping control for multiple-input and multiple-output nonlinear systems in pure-feedback form with time-delay and input quantisation, we construct a high-gain state observer and an output-feedback adaptive control scheme using backstepping method, with neural networks to estimate the uncertain nonlinear functions. Then, we propose an output feedback neural controller that ensures all the state trajectories in the time-delay quantised nonlinear systems are ultimately bounded, with the control signal being quantised by either a hysteretic quantiser or a logarithmic quantiser. An illustrative example is presented to show the applicability of the new control method developed.  相似文献   

12.
针对高阶非线性系统,开展自适应神经网络跟踪控制器设计,系统受到随机扰动的影响.首次把输入和输出约束问题引入到高阶系统的跟踪控制中,并假定系统动态是未知.首先借用高斯误差函数表达连续可微的非对称饱和模型以实现输入约束,和障碍Lyapunov函数保证系统输出受限;其次,针对高阶非线性系统,径向基函数(RBF)神经网络用来克服未知系统动态和随机扰动.在每一步的backstepping计算中,仅用到单一的自适应更新参数,从而克服了过参数问题;最后,基于Lyapunov稳定性理论提出自适应神经网络控制策略,并减少了学习参数.最终结果表明设计的控制器能保证所有闭环信号半全局最终一致有界,并能使跟踪误差收敛到零值小的邻域内.仿真研究进一步验证了提出方法的有效性.  相似文献   

13.
针对一类不确定的非线性多变量离散时间动态系统,提出了一种基于切换的多模型自适应控制方法.该控制方法的特点在于以下两个方面:首先,引入一个高阶差分算子使得非线性系统的非线性项的限制条件不再要求全局有界;其次,提出的控制方法由线性自适应控制器、神经网络非线性自适应控制器以及切换机构组成:线性控制器用来保证闭环系统的输入输出信号有界,神经网络非线性控制器用来改善闭环系统的性能,基于性能指标的切换机构在每一时刻选择性能指标较好的控制器对系统进行控制.理论分析和仿真实验说明了提出的多模型自适应控制方法的有效性.  相似文献   

14.
This paper investigates the output containment tracking problem of nonlinear multiagent systems with mismatched uncertain dynamics and input saturations. A neural network–based distributed adaptive command filtered backstepping (CFB) scheme is given, which can guarantee that the containment tracking errors reach to the desired neighborhood of origin and all signals in the closed‐loop system are bounded. Note that error compensation system and virtual control laws established in CFB only use local information, so the given scheme is completely distributed. Moreover, the applied sliding mode differentiator (SMD) can make the outputs of SMD fast approximate the virtual signal and its derivative at each step of backstepping, which can further improve the control quality. Finally, a simulation example is given to show the effectiveness of the proposed scheme.  相似文献   

15.
This paper focuses on composite nonlinear feedback (CNF) controller design for tracking control problem of strict-feedback nonlinear systems with input saturation to address the improvement of transient performance. First, without considering the input saturation, a stabilisation control law is designed by using standard backstepping technique for the nonlinear system, then a feedforward control law is added to the backstepping-based stabilisation control law to construct a tracking control law. The tracking control law is tuned to drive the output of the closed-loop system to track a command input with quick response. Then, an additional nonlinear feedback law is constructed and combined with the tracking control law to obtain a CNF control law. The role of this additional nonlinear feedback law is to smoothly change the damping ratio of the closed-loop system while the system output approaches the command input, and to reduce overshoot caused by the tracking control law. It is shown that the extra-adding nonlinear feedback part does not cause the loss of stability of the closed-loop system in its attractive basin.  相似文献   

16.
In this paper, we are dealing with the problem of regulating unknown nonlinear dynamical systems. First a dynamical neural network identifier is employed to perform black box identification and then a regular static feedback is developed to regulate the unknown system to zero. Not all the plant states are assumed to be available for measurement.A preliminary version of this paper has been presented at the IEEE Mediterranean Symposium on new directions in control theory and applications, Chania, Crete, Greece, June 1993.  相似文献   

17.
18.
Model predictive control (MPC) has been effectively applied in process industries since the 1990s. Models in the form of closed equation sets are normally needed for MPC, but it is often difficult to obtain such formulations for large nonlinear systems. To extend nonlinear MPC (NMPC) application to nonlinear distributed parameter systems (DPS) with unknown dynamics, a data-driven model reduction-based approach is followed. The proper orthogonal decomposition (POD) method is first applied off-line to compute a set of basis functions. Then a series of artificial neural networks (ANNs) are trained to effectively compute POD time coefficients. NMPC, using sequential quadratic programming is then applied. The novelty of our methodology lies in the application of POD's highly efficient linear decomposition for the consequent conversion of any distributed multi-dimensional space-state model to a reduced 1-dimensional model, dependent only on time, which can be handled effectively as a black-box through ANNs. Hence we construct a paradigm, which allows the application of NMPC to complex nonlinear high-dimensional systems, even input/output systems, handled by black-box solvers, with significant computational efficiency. This paradigm combines elements of gain scheduling, NMPC, model reduction and ANN for effective control of nonlinear DPS. The stabilization/destabilization of a tubular reactor with recycle is used as an illustrative example to demonstrate the efficiency of our methodology. Case studies with inequality constraints are also presented.  相似文献   

19.
Ill-conditioned processes often produce data of low quality for model identification in general, and for subspace identification in particular, because data vectors of different outputs are typically close to collinearity, being aligned in the “strong” direction. One of the solutions suggested in the literature is the use of appropriate input signals, usually called “rotated” inputs, which must excite sufficiently the process in the “weak” direction. In this paper open-loop (uncorrelated and rotated) random signals are compared against inputs generated in closed-loop operation, with the aim of finding the most appropriate ones to be used in multivariable subspace identification of ill-conditioned processes. Two multivariable ill-conditioned processes are investigated and as a result it is found that closed-loop identification gives superior models, both in the sense of lower error in the frequency response and in terms of higher performance when used to build a model predictive control system.  相似文献   

20.
In this paper, a novel robust adaptive neural control scheme is proposed for a class of uncertain multi-input multi-output nonlinear systems. The proposed scheme has the following main features: (1) a kind of Hurwitz condition is introduced to handle the state-dependent control gain matrix and some assumptions in existing schemes are relaxed; (2) by introducing a novel matrix normalisation technique, it is shown that all bound restrictions imposed on the control gain matrix in existing schemes can be removed; (3) the singularity problem is avoided without any extra effort, which makes the control law quite simple. Besides, with the aid of the minimal learning parameter technique, only one parameter needs to be updated online regardless of the system input–output dimension and the number of neural network nodes. Simulation results are presented to illustrate the effectiveness of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号