首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 85 毫秒
1.
基于粒子群算法的PID参数优化   总被引:1,自引:0,他引:1  
杨诚  杨传启 《自动化仪表》2006,27(Z1):95-96
粒子群优化PSO算法是近几年出现的一种新型演化算法,对连续函数的优化效果良好。通过采用PSO算法对PID参数进行了优化,使用实数编码方法,用局部版粒子群算法取得了良好的优化结果。说明了粒子群算法寻优简单、鲁棒性强、易于并行化,是一种效率很高的寻优方法,是PID参数优化的理想方法。  相似文献   

2.
混合型粒子群优化算法研究   总被引:2,自引:1,他引:2  
为了改进粒子群算法的性能,提出了融合其他算法优点的混合型粒子群算法。对三种主流的混合粒子群优化算法(基因粒子群、免疫粒子群、混沌粒子群)分别从混合目的、混合方式、实现步骤、算法优化性能等多个方面进行了研究,给出了这三种混合粒子群算法的优缺点及适用范围。  相似文献   

3.
提出了一种基于粒子进化的多粒子群优化算法。该算法采用局部版的粒子群优化方法,多个粒子群彼此独立地搜索解空间,从而增强了全局搜索能力;利用重置进化粒子位置的方法使陷入局部值的粒子摆脱局部最小,从而有效地避免了"早熟"问题,提高了算法的稳定性。对3个测试函数进行了对比实验,结果表明该算法优于标准粒子群算法。  相似文献   

4.
以管网造价年费用折算值最低为目标,采用粒子群算法对给水管网进行优化设计;首先对节点压力设置罚函数,对不满足压力要求的节点压力进行惩罚,以保证管网中各个节点都满足最小压力约束;由于工程中所用管径值全部都是离散值,算法对搜索得到的结果进行标准化处理,保证求得的管径组合方案符合实际要求;与给水管网优化设计中常用方法遗传算法相比,粒子群算法降低了计算复杂度,具有较好的求解性能,而且具有较快的收敛速度和全局搜索能力.  相似文献   

5.
基于粒子群优化算法的聚类分析   总被引:18,自引:0,他引:18  
基于求解实优化问题时粒子群算法优于遗传算法这一事实,在基于遗传算法的K-均值聚类算法的基础上,给出了一种摹于粒子群优化算法的聚类方法。实验结果显示,基于粒子群优化算法的聚类方法在收敛速度方面明显优于基于遗传算法的聚类方法。  相似文献   

6.
粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的,用于解决优化问题的一类新兴的随机优化算法。本文首先介绍PSO算法的基本原理和工作机制;然后介绍粒子群优化算法的优化策略,包括提高收敛速度﹑算法离散化﹑提高总群多样性;最后对其将来的发展进行了展望。  相似文献   

7.
粒子群优化算法   总被引:86,自引:3,他引:86  
系统地介绍了粒子群优化算法,归纳了其发展过程中的各种改进如惯性权重、收敛因子、跟踪并优化动态目标等模型。阐述了算法在目标函数优化、神经网络训练、模糊控制系统等基本领域的应用并给出其在工程领域的应用进展,最后,对粒子群优化算法的研究和应用进行了总结和展望,指出其在计算机辅助工艺规划领域的应用前景。  相似文献   

8.
基于模拟退火算法思想的粒子群优化算法   总被引:30,自引:0,他引:30  
粒子群优化是由Eberhart博士和Kennedy博士于1995年根据鸟或鱼群居社会行为而提出的。本文提出了4种改进的算法,特别推荐结合模拟退火算法思想提出的一种新算法。经过与基本粒子群算法比较测试,证实它是一种简单有效的算法。  相似文献   

9.
宁辉华  曹步文 《福建电脑》2011,27(11):46-47
粒子群优化(PSO)算法是一种新颖的演化算法,它属于一类随机全局优化技术,通过粒子间的相互作用在复杂搜索空间中发现最优区域。本文介绍了PSO算法的基本原理、应用领域,并用matlab实现了该算法。  相似文献   

10.
李睿  苑柳青  李明 《计算机工程》2011,37(13):153-155
针对Unscented粒子滤波(UPF)算法中的粒子退化及重采样引起的粒子枯竭等问题,利用粒子群优化算法使粒子通过比较其当前值与最优粒子的适应度值调整自身速度,向高似然域移动,寻找最优位置,并对重采样过程进行优化,以缓解粒子的退化及枯竭问题。实验结果证明,该算法提高了UPF算法的状态估计精度。  相似文献   

11.
基于粒子群优化算法的电力系统无功优化   总被引:1,自引:0,他引:1       下载免费PDF全文
陶国正  徐志成 《计算机工程》2010,36(20):198-199
针对粒子群优化算法在进化中随种群多样性降低易出现早熟收敛等问题,结合全局-局部最优模型,提出一种改进的全局-局部参数最优粒子群优化算法。利用全局-局部最优惯性权重及全局-局部最优加速度常数,简化速度更新方程,使算法性能得到改善。将该算法应用于电力系统无功优化中,仿真结果表明,网损平均值更低,寻优性能更好,优化的网损值集中在较小的区间。  相似文献   

12.
基于APSO算法的电力系统无功优化   总被引:1,自引:0,他引:1       下载免费PDF全文
李丹  高立群  刘佳  王珂 《计算机工程》2008,34(23):17-19
针对粒子群优化算法易早熟收敛的缺点,提出一种自适应粒子群优化算法(ASPO),将物种的概念引入种群多样性测度中,利用种群多样性信息对惯性权重进行非线性的调整,并引入速度变异算子和位置交换算子,增强算法的全局收敛性能。将APSO算法应用于电力系统无功优化,对IEEE-30节点系统进行仿真计算,仿真结果表明,系统网损从5.988 MW降到4.889 MW,下降率为18.36%,算法的收敛精度和收敛稳定性均较当前常用方法有明显的提高。  相似文献   

13.
引入局部搜索能力强的共轭梯度法对粒子群算法进行改进,在粒子群算法陷入停滞时,把当前最优解作为共轭梯度法的初始点,再用共轭梯度法做运算,使算法跳出局部最优,大大改善了粒子群算法的性能.将该混合算法用于求解 IEEE30节点系统无功优化问题,算例结果验证了该算法的有效性.  相似文献   

14.
以保证全局收敛的随机微粒群算法为基础,文章提出了一种双群体随机微粒群算法——DB-SPSO。该方法采用两个群体同时进化,一个群体在进化过程中所出现的停止微粒由另一群体的微粒来代替,并和此群体中其余的微粒一起继续进化。通过对此算法的参数适用范围及收敛率进行讨论,给出了此算法的适用范围。其仿真结果表明:对于单峰函数和多峰函数,此算法都能够取得较好的优化效果。  相似文献   

15.
粒子群算法是一种进化计算技术。文章提到的基于距离扩散的粒子群算法(JLSPSO)是在随机粒子群算法的进化过程中,嵌入确定性搜索方法以避免出现停止微粒,并且被每个微粒所共享的社会信息是随距离扩散,以便对微粒产生不同影响。经过这样改进后,JLSPSO既可以加快收敛速度,又可以保持群体多样性。通过对两个多峰的测试函数进行仿真,其结果表明:JLSPO算法不仅具有较快的收敛速度,而且能够更有效地进行全局搜索。  相似文献   

16.
李明  逄博  年福忠 《计算机工程》2012,38(8):134-136
粒子群优化(PSO)粒子滤波算法容易陷入局部最优,从而降低算法精度。针对该问题,提出一种基于混沌的PSO粒子滤波算法。该算法通过混沌搜索算法找到全局最优位置,驱散聚集在局部最优的粒子群,使其向全局最优位置靠近,增加有效估计粒子数,抑制粒子退化与枯竭问题。仿真结果表明,与传统的粒子滤波算法和PSO粒子滤波算法相比,改进算法的估计精度有较大提高。  相似文献   

17.
细菌觅食优化算法(BFOA)具有全局搜索能力强的优点,但存在收敛速度慢的缺陷.为了解决以上问题,结合收敛速度快的粒子群优化算法,提出一种基于粒子群优化的细菌觅食优化算法(BF-PSO),该改进的优化算法具有可操作性和优越性.选用测试函数和对PID控制参数整定的实例进行Matlab仿真,结果进一步显示了BF-PSO的优化能力优于BFOA,收敛速度快,且具有较好的鲁棒性.  相似文献   

18.
基于稳定策略的粒子群优化算法   总被引:1,自引:0,他引:1  
魏波  李元香  徐星  申鼎才 《计算机科学》2011,38(12):221-223
为了解决传统粒子群算法易陷入局部最优解的问题,在借鉴生物学中“进化稳定策略”的基础上,对传统粒子群算法进行了改进,提出了基于稳定策略的粒子群算法.该算法的核心在于,通过稳定参数的设定,使种群中较优的一部分个体按照标准粒子群算法进行寻优,而对种群中其余部分的个体进行随机突变,以达到快速扩大搜索空间、稳定种群中个体多样性的...  相似文献   

19.
基于改进粒子群算法的聚类算法   总被引:3,自引:0,他引:3  
K-均值算法是一种传统的聚类分析方法,具有思想与算法简单的特点,因此成为聚类分析的常用方法之一.但K-均值算法的分类结果过分依赖于初始聚类中心的选择,对于某些初始值,该算法有可能收敛于一般次优解.在分析K-均值算法和粒子群算法的基础上,提出了一种基于改进的粒子群算法的聚类算法.该算法将局部搜索能力强的K均值算法和全局搜索能力强的粒子群算法结合,提高了K均值算法的局部搜索能力、加快了收敛速度,有效地阻止了早熟现象的发生.实验表明该聚类算法有更好的收敛效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号