首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this research work, a novel fuzzy adaptive control is proposed to achieve a projective synchronization for a class of fractional-order chaotic systems with input nonlinearities (dead-zone together with sector nonlinearities). These master-slave systems under consideration are supposed to be with distinct models, different fractional-orders, unknown models, and dynamic external disturbances. The proposed control law consists of two main terms, namely: a fuzzy adaptive control term for appropriately approximating the uncertainties and a fractional-order variable-structure control term for robustly dealing with these inherent input nonlinearities. A Lyapunov approach is used to derive the updated laws and to prove the stability of the closed-loop control system. At last, a set of computer simulation results is carried out to illustrate and further validate the theoretical findings.  相似文献   

2.
An indirect approach to adaptive interval type-2 fuzzy sliding mode control is proposed for the stable synchronization of two different chaotic nonlinear systems with different initial conditions under the presence of uncertainties involving process noises and external disturbances. The indirect model-based approach to adaptation is promoted here as a more suitable strategy for the fast changes that occurs in chaotic systems. In other words, the usual direct adaptive strategies may be too slow to respond to the inherently fast changing dynamics of chaotic systems. Using Lyapunov analysis, the sliding mode approach illustrates the asymptotic convergence of synchronization error to zero as well as good robustness against external disturbances. The interval type-2 structure aims to remedy the undesirable chattering phenomenon that is common in most conventional sliding mode control applications. It also provides a more effective equivalent model in the indirect approach, which leads to improved handling of the chaotic variations and uncertainties. Two numerical pairs of chaotic systems, i.e. the Lorenz and Chen’s systems and the Rössler system and modified Chua’s circuit are considered. In particular, in comparison with its type-1 fuzzy counterpart, the control effort is reduced by an average of 26.25% and 17.4% for the synchronization of the two corresponding systems, respectively. Furthermore, the integral of squared error is also improved by an average of 27.2% and 25.33%. This is while convergence time is reduced to less than 0.5 s and 1.5 s.  相似文献   

3.
一类非线性系统的间接自适应模糊控制器的研究   总被引:12,自引:0,他引:12       下载免费PDF全文
张天平 《控制与决策》2002,17(2):199-202
研究一类不确定非线性系统的间适应模糊控制问题。基于Wang提出的监督控制方案,利用Ⅰ型模糊系统的逼近能力,提出一种自适应模糊控制器设计的新方案,该方案通过引入最优逼近误差的自适应补偿项来消除建模误差的影响,从而在稳定性分析中取消了要求逼近误差平方可积或逼近误差的上确界已知的条件,理论分析证明了闭环控制系统是全局稳定的,跟踪误差收敛到零,仿真结果表明了该方法的有效性。  相似文献   

4.
This paper proposes the design scheme of the alternative adaptive observer and controller based on the Takagi-Sugeno (T-S) fuzzy model. The T-S fuzzy modeling and the state feedback control technique are adopted for the simple structure. The proposed method maintains consistent performance in the presence of parameter uncertainties and incorporates linguistic fuzzy information from human operators. In addition, with the simple adaptive state feedback controller, it solves the singularity problem, which occurs in the inverse dynamics based on the feedback linearization method. Using Lyapunov theory and Lipschitz condition, the stability analysis is conducted, and the adaptive law is derived. The proposed method is applied to the stabilization problem of a flexible joint manipulator in order to guarantee its performance.  相似文献   

5.
This investigation presents a fuzzy sliding-mode technology for synchronizing two chaotic systems. A method of designing a fuzzy sliding-mode control (FSMC) is presented, which utilizes a variable normalization factor. FSMC is designed to guarantee the global asymptotic synchronization of state trajectories of two different chaotic systems. The chaotic systems are numerically simulated to demonstrate the validity and feasibility of the proposed control structure.  相似文献   

6.
In this paper we are interested in robust adaptive fuzzy control of nonlinear SISO systems in the presence of parametric uncertainties. The plant model structure is represented by the Takagi-Sugeno (T-S) type fuzzy system. An indirect adaptive fuzzy controller based on model reference control scheme is proposed to provide asymptotic tracking of reference signal. The controller parameters are computed at each time. The plant state tracks asymptotically the state of the reference model for any bounded reference input signal. Inverted pendulum and mass spring damper are used to check the performance of the proposed controller.  相似文献   

7.
LMI-based fuzzy chaotic synchronization and communications   总被引:2,自引:0,他引:2  
Addresses synthesis approaches for signal synchronization and secure communications of chaotic systems by using fuzzy system design methods based on linear matrix inequalities (LMIs). By introducing a fuzzy modeling methodology, many well-known continuous and discrete chaotic systems can be exactly represented by Takagi-Sugeno (T-S) fuzzy models with only one premise variable. Following the general form of fuzzy chaotic models, the structure of the response system is first proposed. Then, according to the applications of synchronization to the fuzzy models that have common bias terms or the same premise variable of drive and response systems, the driving signals are developed with four different types: fuzzy, character, crisp, and predictive driving signals. Synthesizing from the observer and controller points of view, all types of drive-response systems achieve asymptotic synchronization. For chaotic communications, the asymptotical recovering of messages is ensured by the same framework. It is found that many well-known chaotic systems can achieve their applications on asymptotical synchronization and recovering messages in secure communication by using either one type of driving signals or all. Several numerical simulations are shown with expected satisfactory performance  相似文献   

8.
This paper presents a novel quadratic optimal neural fuzzy control for synchronization of uncertain chaotic systems via H approach. In the proposed algorithm, a self-constructing neural fuzzy network (SCNFN) is developed with both structure and parameter learning phases, so that the number of fuzzy rules and network parameters can be adaptively determined. Based on the SCNFN, an uncertainty observer is first introduced to watch compound system uncertainties. Subsequently, an optimal NFN-based controller is designed to overcome the effects of unstructured uncertainty and approximation error by integrating the NFN identifier, linear optimal control and H approach as a whole. The adaptive tuning laws of network parameters are derived in the sense of quadratic stability technique and Lyapunov synthesis approach to ensure the network convergence and H synchronization performance. The merits of the proposed control scheme are not only that the conservative estimation of NFN approximation error bound is avoided but also that a suitable-sized neural structure is found to sufficiently approximate the system uncertainties. Simulation results are provided to verify the effectiveness and robustness of the proposed control method.  相似文献   

9.
We propose a robust scheme to achieve the synchronization of chaotic systems with modeling mismatches and parametric variations. The proposed algorithm combines high-order sliding mode and feedback control. The sliding mode is used to estimate the synchronization error between the master and the slave as well as its time derivatives, while feedback control is used to drive the slave track the master. The stability of the proposed design is proved theoretically, and its performance is verified by some numerical simulations. Compared with some existing synchronization algorithms, the proposed algorithm shows faster convergence and stronger robustness to system uncertainties.  相似文献   

10.
This paper presents synthesis approaches for synchronization and secure communications of chaotic systems by using fuzzy model-based design methods. Many well-known continuous and discrete chaotic systems can be exactly represented by T-S fuzzy models with only one premise variable. According to the applications on synchronization and signal modulation, the general fuzzy models may have either i) common bias terms; or ii) the same premise variable and driving signal. Then we propose two types of driving signals, namely, fuzzy driving signal and crisp driving signal, to deal with the asymptotical synchronization and secure communication problems for cases i) and ii), respectively. Based on these driving signals, the solutions are found by solving LMI problems. It is worthy to note that many well-known chaotic systems, such as Duffing system, Chua's circuit. Rassler's system, Lorenz system, Henon map, and Lozi map can achieve their applications on asymptotical synchronization and recovering messages in secure communication by using either the fuzzy driving signal or the crisp driving signal. Finally, several numerical simulations are shown to verify the results.  相似文献   

11.
In this paper, the projective synchronization problem of two fractional-order different chaotic (or hyperchaotic) systems with both uncertain dynamics and external disturbances is considered. More particularly, a fuzzy adaptive control system is investigated for achieving an appropriate projective synchronization of unknown fractional-order chaotic systems. The adaptive fuzzy logic systems are used to approximate some uncertain nonlinear functions appearing in the system model. These latter are augmented by a robust control term to compensate for the unavoidable fuzzy approximation errors and external disturbances as well as residual error due to the use of the so-called e-modification in the adaptive laws. A Lyapunov approach is adopted for the design of the parameter adaptation laws and the proof of the corresponding stability as well as the asymptotic convergence of the underlying synchronization errors towards zero. The effectiveness of the proposed synchronization system is illustrated through numerical experiment results.  相似文献   

12.
混沌系统控制与同步可通过优化方法设计控制律引导混沌系统轨道来实现.类电磁机制优化算法(EM)是模拟电磁场带电粒子间吸引一排斥行为机制的一种启发式搜索方法,目前还尚未在混沌系统控制与同步问题中得到应用.本文提出一种混合类电磁机制优化算法(HEM)用于求解该优化问题,该方法采用修改的类电磁机制算法(REM)与差分进化算法(DE)相融合平衡算法对解空间的全局探索和局部开发能力,基准函数测试表明混合算法改善了全局搜索能力及求解可靠性.在此基础上,采用HEM算法引导混沌系统的轨道,搜索施加于系统的小扰动使其轨迹在短时间内跟踪到目标区域;再将混沌系统的同步问题转化为在线轨道导引问题,采用HEM优化算法解决.通过典型离散Henon映射为例,数值仿真结果表明了该方法是解决混沌系统控制与同步的一种有效方法.  相似文献   

13.
14.
设计了具有知识表达和自学习能力的模糊神经网络同步控制器.建立了模糊控制规则,进而提出了多电机同步控制的模糊神经网络学习算法.对四轴同步控制系统进行仿真实验.结果表明模糊神经网络同步控制器能有效实现多电机同步控制,收敛速度较快.鲁棒性较好。  相似文献   

15.
针对信息受限的条件,研究了一类连续混沌系统的同步问题.通过一个有限容量的信道,将具有混沌形式的驱动系统和基于观测器的响应系统连接.在这种情况下,设计了有效的量化方法使得同步误差关于传输误差是输入状态稳定(ISS),同时保证传输误差是指数衰减的.从而使得混沌同步误差在信道容量有限条件下渐近趋于零.最后通过数值例子说明了本文方法的有效性.  相似文献   

16.
研究具有控制约束的两个相同分数阶混沌系统的同步问题.首先,在不消除非线性项的情况下,基于比例控制与自适应控制理论,设计线性自适应切换控制器,实现分数阶混沌系统的同步;其次,考虑到控制器存在约束,利用能够提供无限子控制器的柔性变结构控制策略对线性控制器进行改进,设计柔性变结构控制器,以应对控制的约束,并对线性控制器进行优化;同时,基于分数阶系统Mittag-Leffler稳定判定定理对误差系统的稳定性进行证明.在兼顾系统稳定性与鲁棒性的情况下,可以缩短系统的调整时间,并有效抑制抖振.最后,利用所设计的自适应柔性控制器实现分数阶Chen系统的混沌同步,并通过仿真对比两控制器控制效果,从而验证柔性变结构方法在具有约束的分数阶混沌系统同步控制中的优越性.  相似文献   

17.
This paper presents an exponential synchronization scheme between two chaotic systems with different structures and parameters. A unified model consisting of a linear dynamic system and a bounded static nonlinear operator is employed to describe these totally different chaotic systems. A novel state feedback control law is established to exponentially synchronize the two unified models with different parameters. Most chaotic systems with different structures and parameters, such as Hopfield neural networks, cellular neural networks, Chua’s circuits, unified chaotic systems, Qi systems, and chaotic recurrent multilayer perceptrons, can be transformed into this unified model with the synchronization controller designed in a unified way. Two numerical examples are exploited to illustrate the effectiveness of the proposed design schemes.  相似文献   

18.
We develop a hybrid state-space fuzzy model-based controller with dual-rate sampling for digital control of chaotic systems. A Takagi-Sugeno (TS) fuzzy model is used to model the chaotic dynamic system and the extended parallel-distributed compensation technique is proposed and formulated for designing the fuzzy model-based controller under stability conditions. The optimal regional-pole assignment technique is also adopted in the design of the local feedback controllers for the multiple TS linear state-space models. The proposed design procedure is as follows: an equivalent fast-rate discrete-time state-space model of the continuous-time system is first constructed by using fuzzy inference systems. To obtain the continuous-time optimal state-feedback gains, the constructed discrete-time fuzzy system is then converted into a continuous-time system. The developed optimal continuous-time control law is finally converted into an equivalent slow-rate digital control law using the proposed intelligent digital redesign method. The main contribution of the paper is the development of a systematic and effective framework for fuzzy model-based controller design with dual-rate sampling for digital control of complex such as chaotic systems. The effectiveness and the feasibility of the proposed controller design method is demonstrated through numerical simulations on the chaotic Chua circuit  相似文献   

19.
通过广义哈密顿系统和观测器法,本文将非光滑混沌系统的同步问题转化成了研究光滑系统零解的稳定性,从而给出了混沌同步的条件.对具体的带于摩擦,碰撞的Duffing振子分别进行研究,使其达到了完全同步,表明该方法的正确性.  相似文献   

20.
This paper studies a general setting of chaos synchronization in the form of a generalized Lur’e system, which includes both the classical and an earlier version of generalized Lur’e systems as special cases. More significantly, for this general setting, some fairly simple and easily used algebraic conditions are derived for verification and design of unidirectional feedback-controlled chaos synchronization. The Chen and Rössler systems are used as examples for illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号