首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Submicrometer SiO2-Al2O3 powders with compositions of 46.5 to 76.6 wt% Al2O3 were prepared by hydrolysis of mixed alkoxides. Phase change, mullite composition, and particle size of powders with heating were analyzed by DTA, XRD, IR, BET, and TEM. As-produced amorphous powders partially transformed to mullite and Al-Si spinel at around 980°C. The compositions of mullite produced at 1400° and 1550°C were richer in Al2O3 than the compositions of stable mullite solid solutions predicted from the phase diagram of the SiO2-Al2O3 system. Particle size decreased with increasing Al2O3 content. The sintered densities depended upon the amount of SiO2-rich glassy phase formed during sintering and the green density expressed as a function of particle size.  相似文献   

2.
Phase Transformation of Diphasic Aluminosilicate Gels   总被引:1,自引:0,他引:1  
Aluminosilicate gels with compositions Al2O2/SiO2 and 2 were prepared by gelling a mixture of colloidal pseudo-boehmite and a silica sol prepared from acid-hydrolyzed Si(OC2H5)4. Upon heating the pseudo-boehmite transforms to γ-Al2O3 around 400°C, then to δ-Al2O3 at 1050°C, and at 1200°C reacts with amorphous SiO2 to form mullite. Some twinned θ-Al2O3 forms before mullite. Nonstoichiometric specimens have a similar transformation sequence, but form mullite grains with inclusions of either Al2O3 or cristobalite, often associated with dislocation networks or micropores. Mullite grains are formed by nucleation and growth and have equiaxed shape.  相似文献   

3.
The structure of mullite, which has a composition ranging from 3Al2O3·2SiO2 to Al2O3·2SiO2, contains ordered oxygen vacancies. Sillimanite, Al2O3·SiO2, has a similar structure but with no vacancies. The indentation hardness of polycrystalline mullite (3Al2O3·2SiO2) was measured from room temperature up to 1400°C and compared with that of single-crystal sillimanite (Al2O3·SiO2) up to 1300°C. It was found that both materials show the same variation in hardness with temperature, suggesting that the structures have a similar resistance to plastic deformation, and therefore that the oxygen vacancies in the mullite structure are not the primary cause of mullite's resistance to high-temperature deformation.  相似文献   

4.
Stoichiometric mullite (71.38 wt% Al2O3-28.17 wt% SiO2) and 80 wt% Al2O3-20 wt% SiO2 gels were prepared by the single-phase and/or diphasic routes. Dense sintered bodies were prepared from both sets of gels in the Al2O3-SiO2 system. Apparent densities of 96% and 97% of theoretical density were measured for the diphasic (using two sols) mullite samples sintered at 1200° and 1300°C for 100 min, respectively; this compared with 85% and 94% for the single-phase xerogels under the same conditions, and to much lower values for mullite prepared from conventional mixed powders. The microstructure of the mullite pellets from diphasic xerogel precursors is also considerably finer.  相似文献   

5.
Mullite and mullite/ZrO2 ceramics were fabricated starting from Si/Al2O3 and Si/Al2O3/ZrO2 powder mixtures, which were mixed and attrition milled with TZP balls in water. Isopressed powder compacts were subjected to a heat treatment in air, during which the Si was oxidized to SiO2. At } 1410°C, reaction between Al2O3 and SiO2 occurred, resulting in mullite (3Al2O3·2SiO2). Depending on the composition of the starting powders, the end product was either single-phase mullite or a mullite composite. The reaction process was monitored by thermogravimetry and dilatometry. It was found that the microstructure and mechanical properties of the reaction-formed mullite ceramics were significantly improved by ZrO2 additions.  相似文献   

6.
The chemical composition of mullite which was termed from 2SiO23Al2O3 xerogel by firing was examined by analytical TEM. Mullite formed at 950°C firing showed around 66 mol% Al2O3, which was fairly Al2O3 rich compared with the bulk composition. The chemical composition of mullite gradually approached the bulk composition as the firing temperature increased to 1400°C and slightly departed again above that firing temperature.  相似文献   

7.
The thermal evolution of a mullite gel of composition 2Al2O3·SiO2 has been investigated. The gel crystallized at 1300°C into an alumina-rich mullite and corundum, instead of single-phase 2Al2O3·SiO2 mullite. The amount of Al2O3 that dissolved in the mullite structure has been determined in the 1300–1780°C temperature range by measuring the mullite lattice parameters. A maximum limit for the amount of Al2O3 in solid solution has been observed. Densification of the gel powders has been analyzed up to temperatures of 1780°C. The microstructure of dense materials always showed the presence of residual Al2O3 particles.  相似文献   

8.
A process for production of near-net-shape mullite-matrix ceramic composites at ≤1300°C has been achieved by reaction-bonding Al2O3, silicon, mullite seeds, and eutectics of Al2O3–SiO2–mixed-rare-earth oxide. The fusion temperature of the eutectic composition utilized is 1175°C. This liquid phase facilitates silicon oxidation, mullitization, and sintering. Mullite phase develops with low residual Al2O3 when 7.5 wt% mixed-rare-earth oxide and 5 wt% mullite seeds are used. The final sinter is >90% of theoretical density, >90% mullite (by quantitative XRD), and suffers 2.2% sintering shrinkage.  相似文献   

9.
The microstructure of vitrified kaolin ceramic tapes has been studied via scanning and transmission electron microscopy (SEM and TEM). The sintered samples contained crystalline phase of predominantly stoichiometric mullite (3Al2O3·2SiO2), which consisted of high aspect ratio, acicular crystals that are often referred to as secondary mullite. These crystals were interlocked and embedded in an aluminosilicate glass matrix of inhomogeneous composition. The glass matrix contained an average of ∼3.63 wt% K as determined by energy-dispersive X-ray analysis (EDS), whose composition could be approximated to 5Al2O3·16SiO2·0.1MgO·0.3K2O·0.15TiO2·0.12Fe2O3. The acicular crystals have approximately the stoichiometric composition of Al2O3:SiO2= 3:2. They have grown along a specific crystallographic orientation along the [001] axis. The crystal growth front exhibited facetting on the {110) planes with microfacetting on both the {100) and {010) planes.  相似文献   

10.
SiO2-Al2O3 melts containing 42 and 60 wt% A12O3 were homogenized at 2090°C (∼10°) and crystallized by various heat treatment schedules in sealed molybdenum crucibles. Mullite containing ∼78 wt% A12O3 precipitated from the 60 wt% A12O3 melts at ∼1325°± 20°C, which is the boundary of a previously calculated liquid miscibility gap. When the homogenized melts were heat-treated within this gap, the A12O3 in the mullite decreased with a corresponding increase in the Al2O3 content of the glass. A similar decrease of Al2O3 in mullite was observed when crystallized melts were reheated at 1725°± 10°C; the lowest A12O3 content (∼73.5 wt%) was in melts that were reheated for 110 h. All melts indicated that the composition of the precipitating mullite was sensitive to the heat treatment of the melts.  相似文献   

11.
A graphite chamber was used for the reaction between samples of 45 or 55 wt% alumina and a mixture of metallurgical coke and potassium carbonate. Thermal treatments were conducted at 1000°C. The results suggest that the potassium attack in silica-alumina bricks is controlled by the following reactions: K2O + SiO2→ K2O → SiO2 in the glassy matrix; 3(K2O · 2SiO2) + 3Al2O3→ 2SiO2· 3(K2O · Al2O3· 2SiO2) + 2SiO2 for short times; and K2O → Al2O3· 2SiO2+ 2SiO2· K2O · Al2O3· 4SiO2 for long times. In 55 wt% alumina bricks containing corundum and tridymite, potassium also attacks those phases forming a glassy phase. The formation of kaliophilite at the matrix/mullite grain interface causes a volumetric expansion of 55.5%, resulting in cracks in the matrix. Because the kaliophilite phase is not in equilibrion with mullite, the former will react with free silica to form leucite that is more thermodynamically stable.  相似文献   

12.
The independent crystallization sequence of an Al2O3 component is modified in the presence of SiO2 and vice versa. Mixed SiO2-Al2O3, gel (28 wt% SiO2 and 72 wt% Al2O3) forms neither cristobalite nor γ-Al2O3 and corundum at 1000°C but forms Si-Al spinel; an amorphous aluminosilicate phase invariably also forms after the gel is heated. However, the composition of this amorphous aluminosilicate phase is not as yet known.  相似文献   

13.
On the basis of 190 runs made up to 1860°C in sealed noble-metal containers the following revisions have been made in the equilibrium diagram for the system A12O3–SiO2. Mullite melts congruently at 1850°C. The extent of equilibrium solid solution in mullite at solidus temperature is from approximately 60 mole % Al2O3 (3/2 ratio) to 63 mole % A12O3. Metastable solid solutions can be prepared up to about 67 mole % Al2O3. There is no evidence for stable solubility of excess SiO2 beyond the 3/2 composition at pressures below 3 kbars. Refractive indices are presented for glasses containing up to 60 mole % Al2O3 and from them the composition of the eutectic is confirmed at 5 mole % SiO2. The variation in lattice constants of the mullite solid solution is not an unequivocal guide to composition since mullites at one composition produced at different temperatures show differences in spacing, no doubt reflecting Al-Si ordering phenomena. The possibility of quartz and corundum being the stable assemblage at some low temperatures and pressures cannot be ruled out. A new anhydrous phase in the system is described, which was previously thought to be synthetic andalusite; it is probably a new polymorph of the Al2SiO5 composition with ortho-rhombic unit-cell dimensions a =7.55 A, b =8.27 A, and c = 5.66 A.  相似文献   

14.
Sample disks prepared from Al2O3 (61 wt%), SiO2 (28 wt%), and Fe2O3(II wt%) powders were sintered at 1270° and 1440°C and then annealed between 1300° and 1670°C. The annealed samples consisted of mullite as the main compound with minor amounts of glass and sometimes magnetite. The iron content of the mullites decreases strongly from ∼ 10.5 wt% Fe2O3 at 1300°C to ∼ 2.5 wt% Fe2O3 at 1670°C. A complex temperature-controlled exsolution mechanism of iron from mullite is considered.  相似文献   

15.
Starting powders containing 72 wt% Al2O3 and 28 wt% SiO2, were prepared by sol-gel methods classified as colloidal and polymeric. Compacts fired at 1700°C showed significant differences in microstructure. The specimens formed with the colloidal powder had mullite grains of prismatic shape and a liquid phase; with polymeric powder, mullite grains were granular with no liquid phase present. It is shown that the mullite grains in the first case are higher in AI2O3 content, resulting in an excess of SiO2 which is the base for the liquid phase. In the second case, the mullite grains have the same Al2O3 content as the starting powders. The presence of a liquid phase in the first case is considered to be metastable, resulting from the nature of the starting materials and processing conditions employed.  相似文献   

16.
Oxygen tracer diffusivities of low- and high-alumina mullite ceramics (72 wt% Al2O3, 28 wt% SiO2 and 78 wt% Al2O3, 22 wt% SiO2, respectively) were determined. Gas/solid exchange experiments were conducted in an atmosphere enriched in the rare stable isotope 18O, and the resulting 18O isotope depth distributions were analyzed using SIMS depth profiling. The investigation showed that grain-boundary diffusivities for both mullite ceramics were several orders of magnitude higher than mullite volume diffusivity. Activation enthalpies of oxygen diffusion were 363 ± 25 kJ/mol for the low-alumina and 548 ± 46 kJ/mol for the high-alumina materials. Because the glassy grain-boundary films were not identified, the differences between the low- and high-alumina materials might be explained by different impurity concentrations in the grain boundaries of the two materials.  相似文献   

17.
The interaction of molten salts of different Na2O activities and mullite is examined with furnace and burner tests. The more-acidic molten salts form small amounts of Al2O3; the more-basic molten salts form various Na2O–Al2O3–SiO2 compounds. The results are interpreted using the Na2O–Al2O3–SiO2 ternary phase diagram, and some possible diffusion paths are discussed. The generally higher melting points of Na2O–Al2O3–SiO2 compounds lead to better behavior of mullite in molten salts, as compared to SiO2-protected ceramics such as SiC. Mullite-coated SiC is discussed, and the corrosion behavior is evaluated.  相似文献   

18.
The structure of SiO2-Al2O3 glasses with up to 60 wt% Al2O3 was investigated using the radial distribution function together with the correlation method based on X-ray scattering intensity data. Radial distribution curves are interpreted on the basis of glass-in-glass separation with the constituents of SiO2-rich and Al2O3-rich glasses. The structure of the Al2O3-rich glass has a short-range ordering similar to the crystal structure of mullite. The calculated S- i (S) curve of this model gives good agreement with the observed one.  相似文献   

19.
Infrared-Transparent Mullite Ceramic   总被引:1,自引:0,他引:1  
Mullite ceramic, transparent in the infrared, was prepared by hot-pressing and hot-isostatically pressing starting materials derived from alkyloxides. A composition with 72.3 wt% Al2O3 yielded transparent, submicrometer grain size bodies at 1630°C, whereas higher temperatures produced glass-containing microstructures. A composition with 76 wt% A12O3 formed precipitates of α-Al2O3 at the consolidation temperature, which could be removed by subsequent annealing between 1800° and 1850°C. Spectral transmittance and absorption coefficients of the bodies are reported. The formation of the second phases was linked to phase equilibria and grain growth that promoted compositional equilibration of the mullite phase. The results suggest adjustments to phase boundaries in the high-temperature segment of the SiO2-Al2O3 phase diagram.  相似文献   

20.
The crystallization of Al2O3-rich glasses in the system SiO2-Al2O3 which were prepared by flame-spraying and/or splat-cooling was studied by DTA, electron microscopy, and X-ray diffraction. Over a wide range of compositions, the crystallization temperature ( Tx ) remained near 1000°C, changing smoothly with composition. In all cases crystallization of mullite was detected by X-ray diffraction. In the low-Al2O3 region, coarsening of the microstructure during crystallization was observed by electron microscopy. In the high-Al2O3 region mullite and γ-Al2O3 cocrystallized; this behavior may be interpreted as evidence of a cooperative process of crystallization at the respective Tx 's. The crystallite size of the mullite immediately after rapid crystallization increased continuously with increasing Al2O3 content. In light of the Tx data, the adequacy of the evidence for the proposed metastable miscibility gap in the SiO2-Al2O3 system is questioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号