首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Sub-microstructured Ti5Si3/TiC composites were in-situ fabricated by through spark plasma sintering (SPS) technique using Ti and nanosized SiC powders without any additive. It was found that the composite could be sintered in a relatively short time (8 min at 1260°C) to 98.8% of theoretical density. After sintering, the phase constituents and microstructures of the samples were analyzed by X-ray diffraction (XRD) techniques and observed by scanning electron microscopy (SEM) and TEM. Fracture toughness at room temperature was also measured by indentation tests. The results showed that fracture toughness of Ti5Si3/TiC composite reached 4.2 ± 0.4 MPa.m1/2, which is higher than that of monolith Ti5Si3 (2.5 MPa.m1/2).  相似文献   

2.
Reactive hot-press (1800-1880 °C, 30 MPa, vacuum) is used to fabricate relatively dense B4C matrix light composites with the sintering additive of (Al2O3 +Y2O3). Phase composition, microstructure and mechanical properties are determined by methods of XRD, SEM and SENB, etc. These results show that reactions among original powders B4C, Si3N4 and TiC occur during sintering and new phases as SiC, TiB2 and BN are produced. The sandwich SiC and claviform TiB2 play an important role in improving the properties. The composites are ultimately and compactly sintered owing to higher temperature, fine grains and liquid phase sintering, with the highest relative density of 95.6%. The composite sintered at 1880 °C possesses the best general properties with bending strength of 540 MPa and fracture toughness of 5.6 MPa m1/2, 29 and 80% higher than that of monolithic B4C, respectively. The fracture mode is the combination of transgranular fracture and intergranular fracture. The toughening mechanism is certified to consist of crack deflection, crack bridging and pulling-out effects of the grains.  相似文献   

3.
ZrB2-SiC ultra-high temperature ceramic composites reinforced by nano-SiC whiskers and SiC particles were prepared by microwave sintering at 1850°C. XRD and SEM techniques were used to characterize the sintered samples. It was found that microwave sintering can promote the densification of the composites at lower temperatures. The addition of SiC also improved the densification of ZrB2-SiC composites and almost fully dense ZrB2-SiC composites were obtained when the amount of SiC increased up to 30vol.%. Flexural strength and fracture toughness of the ZrB2-SiC composites were also enhanced; the maximum strength and toughness reached 625 MPa and 7.18 MPa·m1/2, respectively.  相似文献   

4.
Particle-reinforced SiC composites with the addition of TiC or TiB2 were fabricated at 1850 °C by hot-pressing. Densification was accomplished by utilizing a liquid phase formed with added Al2O3, Y2O3, and surface SiO2 on SiC. Their mechanical and electrical properties were measured as a function of TiC or TiB2 content. Adding TiC or TiB2 to the SiC matrix increased the toughness, and decreased the strength and electrical resistivity. The fracture toughnesses of SiC-50 wt% TiC and SiC-50 wt% TiB2 composites were approximately 60% and 50%, respectively, higher than that of monolithic SiC ceramics. Microstructural analysis showed that the toughening was due to crack deflection, with some possible contribution from microcracking in the vicinity of TiC or TiB2 particles.  相似文献   

5.
SiC–Si composites are widely used either as a bulk material or as a matrix for fibre reinforced ceramics. In the current research, nanocomposites of SiC–Si with different volume fractions of Si were sintered by spark plasma sintering (SPS) for the first time. The effect of Si content and different sintering parameters on relative density, microstructure, hardness and fracture toughness of the sintered materials have been investigated. The relative density increased from about 83 to 99% by increasing the sintering temperature to 1700°C, sintering time to 10?min, and pressure to 70?MPa for composites containing >20?vol.-% Si. The results revealed that the full dense SiC–20?vol.-%Si composite can be obtained by SPS at 1700°C, 10?min and 70?MPa. Moreover, in this condition, the hardness and toughness of the composites reached the optimum values.  相似文献   

6.
SiC-AlN composites have been successfully pressureless sintered by using commercial SiC and AlN powders with the optimum amount of sintering aid. The important parameters during pressureless sintering, including the amount and type of sintering aids, sintering temperature, sintering period and packing powder have been studied. Yttria was found to be a better sintering aid than alumina or calcia. The yttria sintering aid reacts with AlN and SiC powders and forms a Y-Al-Si-O-N grain-boundary phase to assist densification during pressureless sintering. With 2 wt% yttria, SiC-AlN composites can be pressureless sintered to high density at 2050–2100 °C for 2 h under the firing conditions where alpha-pp packing powder is used during firing. The microstructure and phases of the composites were characterized by using scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometry and X-ray diffractometry.  相似文献   

7.
The effects of processing parameters on the microstructure and oxidation resistance of silicon carbide (SiC) coated carbon-carbon (C-C) composites were investigated. C-C composites were made from plain woven carbon cloths and phenolic derived carbon matrices in the laboratory. Pressureless reaction sintering has been used to apply SiC coating to C-C composites using epoxy resin and silicon powder as the precursor. Results showed that the oxidation resistance of C-C composites was enhanced by coating with SiC. The pressureless reaction sintering process exhibits good processability. -SiC was formed after heat treatment at 1800 °C and the -SiC formed after heat treatment at 2200 °C. The SiC coated C-C composites exhibit good oxidation resistance at 1000 °C for 100 h under the test conditions.  相似文献   

8.
Composites of SiC-TiC containing up to 45 wt% of dispersed TiC particles were pressureless sintered to 97% of theoretical density at temperatures between 1850°C and 1950°C with Al2O3 and Y2O3 additions. An in situ-toughened microstructure, consisted of uniformly distributed elongated -SiC grains, matrixlike TiC grains, and yttrium aluminum garnet (YAG) as a grain boundary phase, was developed via pressureless sintering route in the composites sintered at 1900°C. The fracture toughness of SiC-30 wt% TiC composites sintered at 1900°C for 2 h was as high as 7.8 MPa·m1/2, owing to the bridging and crack deflection by the elongated -SiC grains.  相似文献   

9.
ZrB2-SiC ultra-high temperature ceramic composites reinforced by nano-SiC whiskers and SiC particles were prepared by microwave sintering at 1850°C. XRD and SEM techniques were used to characterize the sintered samples. It was found that microwave sintering can promote the densification of the composites at lower temperatures. The addition of SiC also improved the densification of ZrB2-SiC composites and almost fully dense ZrB2-SiC composites were obtained when the amount of SiC increased up to 30vol.%. Flexural strength and fracture toughness of the ZrB2-SiC composites were also enhanced; the maximum strength and toughness reached 625 MPa and 7.18 MPa·m1/2, respectively.  相似文献   

10.
Binghong Li  Hui Cao  Lin He  Jun Li 《Materials Letters》2009,63(23):2010-2012
TiC particulates reinforced Fe-based composites have been fabricated using ferrotitanium and carbon black powders with the combination of in situ and spark plasma sintering (SPS) technique. The sintering and densification behaviors were investigated. The results show that when the composite was sintered at 1150 °C for 5 min, the maximum relative density and hardness are 99.2% and 83.2 HRA, respectively. The phase evolution during sintering indicates that the in situ reaction occurs evidently between 850 °C and 1050 °C. The microstructure investigation demonstrates that with the rapid in situ SPS technique, fine TiC particulates with a size of ~ 1 μm are homogeneously distributed in the matrix.  相似文献   

11.
以微米级B4C粉体为原料,通过与TiO2葡萄糖原位反应制备TiB2颗粒增韧B4C复合材料。研究了烧结温度和烧结助剂对材料烧结行为及力学性能的影响。在1950℃反应热压下获得了相对密度为97.7%的TiB2/B4C复合材料,断裂韧性达到5.3 MPa·m1/2。添加Al2O3和Si烧结助剂后,分别在1950℃和1900℃ 获得了接近致密的(TiB2,Al2O3)/B4C和(TiB2,SiC)/B4C复合材料,断裂韧性分别提高到7.09和6.35 MPa·m1/2。显微组织分析表明,增韧作用主要来自残余应力引起的裂纹偏转。  相似文献   

12.
(SiC,TiB2)/B4C复合材料的烧结机理   总被引:3,自引:2,他引:1       下载免费PDF全文
研究了在热压条件下制备 (SiC, TiB2)/ B4C复合材料的烧结机理。认为烧结助剂的加入使本体系成为液相烧结,同时粉料的微细颗粒对复合材料的烧结致密也有重要贡献。分析和测量了制取的复合材料的相组成、显微结构和力学性能。结果表明,采用B4C与Si3N4和少量SiC、TiC为原料,Al2O3+Y2O3为烧结助剂,在烧结温度1800~1880℃,压力30 MPa的热压条件下烧结反应生成了SiC、TiB2和少量的BN,制取了(SiC, TiB2)/B4C复合材料。所形成的晶体显微结构为层片状。制得的试样的硬度、抗弯强度和断裂韧性分别可达HRA88.6、540 MPa和5.6 MPa·m1/2。   相似文献   

13.
ZrB2-SiC ultra-high temperature ceramic composites reinforced by nano-SiC whiskers and SiC particles were prepared by microwave sintering at 1850°C. XRD and SEM techniques were used to characterize the sintered samples. It was found that microwave sintering can promote the densification of the composites at lower temperatures. The addition of SiC also improved the densification of ZrB2-SiC composites and almost fully dense ZrB2-SiC composites were obtained when the amount of SiC increased up to 30vol.%. Flexural strength and fracture toughness of the ZrB2-SiC composites were also enhanced; the maximum strength and toughness reached 625 MPa and 7.18 MPa·m1/2, respectively.  相似文献   

14.
《Materials Letters》2004,58(1-2):150-153
In the present study, the composites of SiC–TiC are prepared by spark plasma sintering (SPS) in vacuum without additive. The relationship of density and temperature of SiC–TiC composites with different content of TiC is studied. The maximum relative density reached was 98%. The mechanical properties of SiC–TiC composites with different content of TiC, which were sintered at 1800 °C, have been evaluated. From the fracture surface observation, two models of fracture mechanisms of the composites existed: transgranular and intergranular.  相似文献   

15.
Unidirectional SiC/SiC composites are prepared by nano-powder infiltration and transient eutectic-phase (NITE) process, using pyrolytic carbon (PyC)-coated Tyranno-SA SiC fibers as reinforcement and SiC nano-powder with sintering additives for matrix formation. The effects of two kinds of fiber volume fraction incorporating fabrication temperature were characterized on densification, microstructure and mechanical properties. Densification of the composites with low fiber volume fraction (appropriately 30 vol%) was developed even at lower fabrication temperature of 1800 °C, and then saturated at 3rd stage of matrix densification corresponding to classic liquid phase sintering. Hence, densification of the composites with high volume fraction (above 50 vol%) became restricted because the many fibers retarded the infiltration of SiC nano-powder at lower fabrication temperature of 1800 °C. When fabrication temperature increased by 1900 °C, densification of the composites was effectively enhanced in the intra-fiber-bundles and simultaneously the interaction between PyC interface and matrix was strengthened. SEM observation on the fracture surface revealed that fiber pull-out length was accordingly changed with fabrication temperature as well as fiber volume fraction, which dominated tensile fracture behaviors. Through NITE process, SiC/SiC composites with two fracture types were successfully developed by tailoring of appropriate fabrication temperature to fiber volume fraction as follows: (1) high ductility type and (2) high strength type.  相似文献   

16.
High-density BAS/SiC composites were obtained from β-SiC starting powder by the spark plasma sintering technique. Various physical properties of the BAS/SiC composites were investigated in detail, such as densification, phase analysis, microstructures and mechanical properties. The results demonstrated that the relative density of the BAS/SiC composites reached over 99.4% at 1900 °C. The SiC grains were uniformly distributed in the continuous BAS matrix which is probably because of complete infiltration of the SiC particles in BAS liquid-phase formed during sintering. The pull-out of SiC particles, crack deflection and bridging were observed as the major toughening mechanism. The flexural strength and fracture toughness of the BAS/SiC composites sintered at 1900 °C were up to 560 MPa and 7.0 MPa·m1/2, respectively.  相似文献   

17.
The effects of sintering additives on the microstructural development, whisker stability, oxidation resistance and room-temperature mechanical properties of the SiC whisker-reinforced Si3N4 matrix composites were investigated. Seven different combinations of Y2O3 and Al2O3 were used as sintering additives. The composites containing 20 vol % SiC whiskers were densified by hot pressing. The microstructure of the resulting composites was characterized using X-ray diffraction, scanning and transmission electron microscopy. Oxidation testing of the composite at 1400 °C was conducted to investigate the relationship between matrix compositions and oxidation resistance. The flexural strength, fracture toughness and crack propagation patterns were also characterized and correlated with the microstructural features.  相似文献   

18.
This work describes sintering of SiC‐reinforced Al‐matrix composites and in‐situ synthesis of TiC in a powder mixture of Ti and C. In the first case, microwave energy is absorbed by SiC grains, heating the metal matrix to sintering and even melting temperature. The composite is processed at <1 kW microwave power. Microwave absorption and the heating rate increase with decreasing SiC particle size. Composites with high SiC content (70 vol.‐%) are processed at 650 °C/1 h in the microwave furnace, whereas conventional resistive heating at the same temperature did not allow sintering of the sample. In the second case, radiative energy allowed the heating of Ti/C samples up to 950 °C, and microwave assistance enhanced the reaction sintering of Ti/C powder mixtures forming TiC at the border of the Ti particles. The results are compared with conventional processing. Optical images and XRD patterns confirmed the formation of TiC for both techniques.  相似文献   

19.
Sintered polycrystalline compacts in the system diamond-10–50 wt% SiC having average grain size of less than 1 m were prepared at pressure of 6 GPa and temperature between 1400 and 1600 °C. Knoop indentation hardness of the compacts increased with diamond content and sintering temperature, and specimens with a Knoop indentation hardness greater 40 GPa were obtained. It was found that small amount of Al addition into the starting diamond-SiC powder was effective to improve relative density and Knoop indentation hardness of the compacts. The formation of graphite was also suppressed by the addition of Al. Microstructure observation by SEM and TEM suggested that Al segregated at the grain boundary and promoted the bonding between grains. Thin microtwins were observed in diamond grains, whereas fine wavy structures with slightly different orientations were observed in SiC grains, with or without Al addition.  相似文献   

20.
采用金属钛粉和碳化硼为初始粉料,利用SPS放电等离子烧结技术制备了致密的纳米结构TiB2/TiC复合材料.并借助XRD、SEM考察了复合材料的相组成和显微结构,利用压痕法和小样品力学性能测试方法(MSP)测定了室温显微硬度、断裂韧性和MSP强度.研究结果表明:利用一步法直接升温至1550℃并保温6 min制备的复合材料,其晶粒尺寸大于1μm,MSP强度为833 MPa.而采用两步法升温至1550℃,然后迅速降低保温温度至1450℃,并保温6 min条件下使金属钛粉和碳化硼同步完成反应、烧结、致密化,生成晶粒细小的TiB2/TiC复合材料,晶粒尺寸大约为200 nm,并且所制备的复合材料力学性能更好,MSP强度达到1095 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号