首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
根据硬盘基板用材料的要求,制备了MgO-Al2O3-SiO2-TiO2-Y2O3高弹性模量玻璃(120GPa),玻璃的弹性模量随组成的变化服从Makishima-Mackenzie理论,MgO,Al2O3,TiO2,Y2O3等具有较高单位体积离解能的氧化物有利于提高玻璃的弹性模量,但玻璃弹性模量的理论计算值低于测试值,这是因为Makishima-Mackenzie理论没有考虑玻璃内阳离子的具体配位,对MgO,Y2O3堆积密度因子的堆导存在误差,因此利用Makishima-Mackenzie理论发展高弹性模量玻璃时应对MgO,Y2O3等氧化物的计算进行修正。  相似文献   

2.
设计组成为70TeO2—(20—x)ZnO—xWO3—5La2O3—2.5K2O—2.5Na2O—1Yb2O3(x=0,5,10,15和20mol%)的碲酸盐激光玻璃,测试了物理性质、吸收光谱、荧光光谱和荧光寿命,计算了Yb^3 离子的吸收截面、受激发射截面、荧光有效线宽等参数.结果表明,随着WO3含量的增加,玻璃的热稳定性下降;当x=15mol%时,具有体系中最好的光谱性质:高的受激发射截面(1.32pm^2)、长的荧光寿命(0.93ms)和宽的荧光有效线宽(74.5nm),通过激光性能评价,最小泵浦强度为0.92kW/cm^2,表明掺Yb^3 该组分碲酸盐玻璃是实现高能短脉冲可调谐激光器的理想增益介质。  相似文献   

3.
用高温熔融法制备了Tm2O3摩尔掺杂浓度分别为0.1%、0.25%、0.5%、0.75%和1%的33Bi2O3-50SiO2-17PbO玻璃。采用DSC方法对该种玻璃的析晶性能进行研究,发现其Tx–Tg为138℃,说明该玻璃抗析晶性能良好。基于其吸收光谱,采用Judd-Ofelt理论计算了Tm3+离子的J-O参数和部分激发态能级的跃迁几率、荧光寿命和分支比等光谱参量。分析3F4能级寿命随掺杂浓度变化关系,发现产生自淬灭的临界浓度为3.54×1020ions/cm3。用McCumber理论计算在33Bi2O3-50SiO2-17PbO玻璃中Tm3+离子3F4→3H6能级跃迁的吸收截面和发射截面,最大吸收截面和最大受激发射截面分别为3.7×10-21和7.2×10-21cm2。研究结果表明33Bi2O3-50SiO2-17PbO玻璃具有较好的光谱性质,是一种实现~2μm激光的较理想玻璃基质。  相似文献   

4.
通过熔融法制得了一种新型掺Yb^3+的(60-X)P2O5-xB2O3-40ZnO(x=5,10,15,20,25,30%(摩尔分数))系统激光玻璃,并分析了B2O3含量对玻璃结构、物理性能和光谱性能的影响。结果表明,随B2O3含量增加,玻璃由链状变为类似石英玻璃的三维网络结构,力学和热学性能逐步得到改善,并在20%(摩尔分数)B2O3时具有最佳值,当B2O3含量超过20%(摩尔分数)后,玻璃中[BO3]三角体含量开始增多,结构变得松散,力学和热学性能变差,当B203含量达到30%(摩尔分数)时玻璃发生了分相现象。随B2O3含量增加,积分吸收截面在3.77-4.11×10^4pm^3之间,受激发射截面在0.726-0.816pm^2之间,荧光寿命在0.903-0.965ms之间,增益系数在0.662-0.737pm^2.ms之间,最小泵浦强度在1.128-1.398kW/cm^2之间变化。这类硼磷酸玻璃有望成为高平均功率固体激光器的候选基质。  相似文献   

5.
PbBr2-PbF2-P2O5玻璃的结构研究   总被引:3,自引:0,他引:3  
采用红外光谱(IR)和X射线光电子能谱(XPS)等方法研究了PbBr2-PbF2-P2O5系铅卤磷酸盐玻璃的结构。结果表明,Pb^2 离子在玻璃中起着网络修饰阳离子和网络形成体的双重作用。当P2O5含量为60mol%时,Pb^2 离子主要是作为网络修饰体;当P2O5含量降低到50mol%时,一部分Pb^2 离子能够进入玻璃网络形成[PbO4]四面体或P-O-Pb键。Br^-和F^-离子达到一定浓度时就会进入玻璃网络,形成[PO4-nXn](X=Br或F,n=0-4)四面体使磷酸盐链长变短。玻璃中P2O5的含量不变时P-O-P键的比例也基本保持不变;当P2O5的含量降低时,P-O-P键和P-O^-键的含量都减少,P-O-Pb键的含量则明显增加。  相似文献   

6.
选取玻璃组分60SiO2-xBi2O3-(30-x)B2O3-2K2O-7Na2O-1Yb2O3(以mol%记,x=0,5,10,15,20,25,30)为研究对象。通过测试试样的物理性质和光谱性质,应用倒易法(reciprocity method)计算Yb3+离子的受激发射截面(σemi),并且计算了Yb3+的自发辐射几率(Arad),2F5/2能级的辐射寿命(Trad)。讨论了玻璃中Bi2O3和B2O3的组成变化对其物理性质、Yb3+离子的吸收特性、发光特性以及OH-离子对实测Yb3+荧光寿命(Tf)的影响。结果表明:Yb3+掺杂的Si2-Bi2O3-B2O3具有较好的光谱性能,是一种新型的Yb3+掺杂双包层光纤候选基质材料。  相似文献   

7.
通过醇盐不完全水解制备了含有有机基团(O—C2H5)的C/0.5Al2O3-0.5P2O5-100SiO2凝胶,在氮气中加热到300,v700。C使其中的有机基团炭化,得到镶嵌在凝胶玻璃中不同尺寸的碳纳米颗粒。利用高分辨电镜、X射线衍射和喇曼光谱研究了碳纳米颗粒的结构,发现凝胶玻璃中的碳颗粒为非晶碳纳米颗粒。测试了它们的吸收光谱,发现了由于量子限域效应引起的吸收边的移动。在532nmNd:YAG激光的激发下镶嵌有碳纳米颗粒的凝胶玻璃有一强的室温发光,发光峰在586nm左右。发光峰几乎不随碳纳米颗粒尺寸的变化而变化,这种发光产生于碳纳米颗粒的表面或碳颗粒和凝胶网络的界面。  相似文献   

8.
TiO2对CaO-Al2O3-SiO2系玻璃晶化机理的影响   总被引:6,自引:0,他引:6  
使用差热分析(DTA)方法研究了TiO2对CaO-Al2O3-SiO2系玻璃晶化机理的影响,发现在CaO-Al2O3-SiO2系玻璃中,引入TiO2有助于玻璃网络聚合程度的降低,从而导致玻璃的粘度减小,转变温度Tg和析晶峰温度Tp的降低.玻璃的析晶难易程度和析晶峰温度的高低不存在相互对应关系.CaO-Al2O3-SiO2系玻璃中,不管是否加入TiO2,均以表面晶化为主,TiO2的晶核剂效果不显著.充分的核化热处理也不能促使含TiO2的CaO-Al2O3-SiO2系玻璃发生体积晶化,TiO2的含量越高,核化热处理后玻璃的表面晶化效果越显著.  相似文献   

9.
Li1.0Nb0.6Ti0.5O3陶瓷的低温烧结其微波介电性能   总被引:1,自引:1,他引:1  
研究了以Li1.0Nb0.6Ti0.5O3(LNT)陶瓷为基体, B2O3-ZnO-La2O3(BZL)玻璃为烧结助剂的复合材料的低温烧结行为及微波介电特性.研究表明,BZL玻璃能有效降低LNT陶瓷的烧结温度,掺入10wt%BZL玻璃的复合材料能够在900℃烧结致密.XRD与SEM分析结果表明,添加BZL玻璃的样品烧结后含有LNT和LaNbTiO6两种晶相,其中LaNbTiO6相是LNT与BZL玻璃在烧结过程中发生化学反应的产物.在LNT陶瓷中添加BZL玻璃使材料的介电常数和品质因数下降,但有助于减小体系的谐振频率温度系数.掺入10wt%BZL玻璃的复合材料在900℃烧结2h后获得了比较满意的微波介电特性:介电常数k≈58,品质因数Q×f≈4800GHz,谐振频率温度系数τf≈11×10-6/℃.  相似文献   

10.
Al2O3掺杂对YSZ固体电解质烧结及电性能的影响   总被引:5,自引:0,他引:5  
研究了用常规共沉淀法掺杂Al2O3对YSZ固体电解质的烧结及电性能的影响.结果表明:适量的Al2O3能提高YSZ材料的烧结性能,促使其致密化,但过量的Al2O3对材料的致密化不利;同时,材料的晶界电导随Al2O3含量的增大表现出先增大后减小的变化趋势,这与Al2O3对YSZ晶界两方面的不同影响有关,Al2O3偏析于晶界一方面能清除晶界上对氧离子电导不利的SiO2,但另一方面也会降低晶界空间电荷层中的自由氧离子空穴的浓度.  相似文献   

11.
La2O3在MgO-Al2O3-SiO2-TiO2微晶玻璃中的作用   总被引:4,自引:0,他引:4  
在MgO-Al2O3-SiO2-TiO2玻璃中添加不同数量的氧化镧,采用差热分析,X射线衍射及电子显微镜等技术研究了氧化镧对玻璃析晶过程与力学性能的影响。氧化镧的加入使玻璃中析出α-堇青石相的温度降低,同时避免了高膨胀方石英相的析出。随着氧化镧加入量的增加,玻璃整体析晶能力下降,微晶玻璃中晶相含量减少,晶粒尺寸增大,微晶玻璃的弹性模量与硬度减小,断裂韧性增加,体现出大尺寸长柱状金红石晶粒的增韧作用。  相似文献   

12.
表面活性剂对纳米Sb2O3和纳米 Sb2O3/云母分散性的影响   总被引:2,自引:0,他引:2  
以片状云母作为微反应器制备了纳米Sb2O3/云母复合物,并用XRD、TEM进行了表征.研究了表面活性剂对纳米Sb2O3颗粒、纳米Sb2O3/云母复合物的粒子性能及粒度分布的影响,并对二者进行了比较.结果表明:纳米Sb2O3被十六烷基三甲基溴化铵处理后,在云母层间均匀生长,形成的纳米Sb2O3分散性好,粒度分布窄.平均粒径约为5nm,比不加云母制备的纳米Sb2O3小30nm.  相似文献   

13.
以共沉淀法制备的纳米(75mol%Bi2O3+25mol%Y2O3)混合粉体作为原料,通过无压反应烧结工艺制备了纳米Bi2O3-Y2O3快离子导体.对烧结过程中高导电相(纳米δ-Bi2O3)的形成规律研究表明固溶反应发生在烧结过程的初期,在烧结过程中晶粒生长规律符合(D-Do)2=K·t抛物线方程.用模式识别技术对δ-Bi2O3相生成的工艺条件进行优化的工艺参数优化区为Y>-1.846X+3.433(X=0.0059T+0.0101t,Y=-0.0059T+0.0101t,式中,T为烧结温度,t为烧结时间).在T=600℃,t=2h无压反应烧结条件下,纳米晶Bi2O3-Y2O3快离子导体材料的相对密度可达96%以上,并且微观结构致密均匀,很少有残留气孔和裂纹,平均晶粒尺寸在100nm以下.  相似文献   

14.
湿化学法制备 Y2O3纳米粉及透明陶瓷   总被引:7,自引:0,他引:7  
以Y(NO3)3溶液和NH3·H2O为原料,制备了Y2O3纳米粉体.先驱沉淀物的化学组成为Y2(OH)5NO3·H2O.研究了pH值及滴加过程对先驱沉淀物形貌及Y2O3产物烧结性的影响.正向滴定,pH值较低时(pH=7.9),先驱沉淀物为片状结构;pH值较高时(pH=10.0),先驱沉淀物片层状结构特性减轻,并且颗粒变的细小.反向滴加时,片层状结构特征消失,主要为块状晶粒.先驱沉淀物为片状结构时,得到的粉体活性较高.添加适量的(NH4)2SO4能够减轻Y2O3粉体的团聚,沉淀的同时控制pH值在9以下,所得到的粉体具有更好的烧结性能.采用得到的Y2O3纳米粉,不加入任何烧结助剂,经1700℃真空烧结4h得到了透明Y2O3陶瓷.  相似文献   

15.
超声场对中和法制备 Sb2O3的影响   总被引:1,自引:0,他引:1  
对在超声场作用下采用氨水中和氯氧锑(Sb4O5Cl2)制备超细立方晶型Sb2O3的工艺过程和条件进行了研究.结果表明,在超声场作用下制得的Sb2O3为立方晶型,当超声功率为100W,超声时间30min,温度为20℃时,Sb2O3的平均粒径为0.777μm,其分散性较好.通过XRD、SEM和激光粒度仪等测试手段,探讨了超声功率、超声时间、氯氧锑与蒸馏水的调浆液固比和温度等条件对Sb2O3晶型和颗粒粒径的影响.  相似文献   

16.
溶胶-冷冻法制备纳米Gd2O3:Eu3+发光材料   总被引:6,自引:0,他引:6  
采用溶胶-冷冻法合成了粒径为20nm左右的近似于球形的Gd2O3:Eu^3+发光材料.XRD和FTIR分析表明:所合成的前驱体样品为带有结晶水的晶态氢氧化物,经过热处理后得到了立方相的Gd2O3.荧光光谱测试表明:所合成的样品具有良好的Eu^3+特征红光发射,Gd^3+到Eu^3+之间具有有效的能量传递过程.随着灼烧温度的升高,发射峰和激发峰的强度有所增强,荧光寿命变长,这是由于热处理温度升高,晶体生长变好,表面缺陷减少,使表面的猝灭中心减少,从而提高了荧光强度和荧光寿命.  相似文献   

17.
V2O5对 BaTiO3-Y2O3-MgO陶瓷性能的影响   总被引:1,自引:0,他引:1  
研究了V2O5掺杂BaTiO3-Y2O3-MgO系陶瓷的显微结构和介电性能.SEM显示V2O5会促进该体系晶粒生长,降低陶瓷致密度.XRD显示V掺杂样品均为单一赝立方相,其固溶度〉1.0m01%.研究表明,V离子能有效抑制掺杂离子Y、Mg向BaTiO3晶粒内扩散,改变掺杂离子在晶粒中分布,从而形成薄壳层的壳芯晶粒,因此V能提高居里峰的强度并改善电容温度稳定性.多价V离子在还原气氛中以+3、+4为主,能增强瓷料的抗还原性,提高绝缘电阻率(10^13Ω·cm)、降低介电损耗(0.63%).该体系掺杂0.1mol%V时,介电常数达到2600,满足X8R标准.  相似文献   

18.
本文介绍了用化学共沉淀和在适当温度下煅烧以直接制备YAG-Al2O3纳纳米复合粉体的新方法。XRD结果表明,所得粉体具纯的YAG和α-Al2O3相,因此其化学组成符合配料的组分设计,用本方法制备的25vol%YAG-Al2O3复合粉体经热压烧结,所得的致0密体材料为晶内型纳米复合材料,其抗弯强度达612MPa,断裂韧性为4.54MPam^-1/2,都比单相Al2O3陶瓷有大幅度提高。  相似文献   

19.
采用液相浸渍法在球形颗粒LiNi1/3Co1/2Mn1/3O2的表面包覆上了一层Al2O3膜.结构分析表明,表面A1203膜的厚度约100nm,具有一定的无定形结构,核体材料具有纯六方相结构.实验结果证明,表面Al2O3膜能够有效提高正极材料的耐过充能力和循环稳定性.在截止电压为3.0—4.5V,充放电倍率为1C的条件下,Al2O3表面包覆膜后正极活性物质50次循环的容量保持率提高了11.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号