共查询到18条相似文献,搜索用时 62 毫秒
1.
采用同步测压技术,进行了具有不同锥率的超高层建筑刚性模型风洞试验,对该类建筑物的脉动风荷载特性进行了研究。结果表明:超高层建筑采用锥形轮廓后,延长了来流在建筑物侧风面漩涡脱落的卓越频率,横风向升力系数功率谱谱峰小幅下降,有利于缓解风荷载作用下建筑物横风向风荷载及其风致效应,这对横向风风致效应起控制性作用的超高层建筑十分重要。对比分析表明:随着建筑物锥率的增加,横风向升力系数归一化功率谱谱峰下降,功率谱带宽增大,升力系数根方差减小。但是,超高层建筑锥率的变化对顺风向阻力及扭转向扭矩影响较小。锥形超高层建筑的相关系数、相干函数的变化规律与普通棱柱形超高层建筑基本一致,但其升力以及升力与扭矩之间的相关性有所减弱,相干系数小幅增加。 相似文献
2.
采用同步测压技术,进行设置透风孔的超高层建筑刚性模型风洞试验,对该类建筑物的风荷载特征进行研究。结果表明:孔洞附近,顺风向阻力表现出一定涡激力特性,横风向升力功率谱的谱峰下降幅度较大,阻力与升力系数的根方差均减小,但扭转向扭矩系数根方差的减小幅度有限。受孔洞影响的区域,阻力系数与扭矩系数的自相关性减弱,但升力系数的自相关性增强,阻力系数、升力系数的相干函数衰减程度减弱,相干系数的数值减小。设置透风孔后,超高层建筑升力系数、扭矩系数与阻力系数的互相关性不能再忽略不计,但升力系数与扭矩系数之间的互相关性有所减弱。 相似文献
3.
为研究超高层建筑横风向脉动风荷载谱特性,在B、D两类紊流风场中开展了不同长宽比矩形刚性模型测压试验。结果表明:横风向脉动风荷载特性主要受紊流风场、气动外形和旋涡脱落等因素影响,矩形柱截面的长宽比变化将影响功率谱幅值及能量分布。当矩形柱截面长宽比小于3时,横风向脉动风荷载谱特性主要受旋涡脱落控制,但当长宽比超过3后,矩形柱侧面分离再附流动的影响逐渐加强,具体表现在:功率谱峰值减小、带宽增大及高频区出现较小谱峰。根据风洞试验结果和矩形柱横风向脉动风荷载谱特性,提出了归一化横风向脉动风荷载谱模型,该经验公式物理意义明确、形式简洁,有一定的工程参考意义。 相似文献
4.
5.
某超高层建筑高228m,在建筑中部设置大型中庭空间用于建筑的自然通风和采光等。对该建筑进行了风洞模型试验,根据试验结果分析了中庭内风压分布的特点、相关性及概率特征,并对比了有无中庭情况下结构的整体风荷载。结果表明:中庭内风压分布均匀,相关性高,其概率特征可按高斯分布进行处理,中庭的存在对结构整体风荷载没有影响。根据试验结果,并结合规范的分析,给出了中庭内风压的局部体型系数和阵风系数。 相似文献
6.
以武汉一幢超高层钢筋混凝土剪力墙结构为研究对象,利用SAP2000结构分析软件,建立该结构的分析模型,分析了结构的动力特性以及结构在设计风荷载作用下的反应,并根据随机振动理论分析结构的风振响应。 相似文献
7.
8.
该文通过计算流体力学数值模拟技术对某超高层建筑进行了表面风荷载分布的数值模拟。结果表明:由于漩涡脱落,在结构侧面边缘出现了较强烈的负压区;在周边建筑干扰高度范围内,结构表面风压分布较混乱,结构在干扰高度以上部分风压分布比较规律;局部部位的设计风压应参考各风向角下风压峰值。 相似文献
9.
广州西塔(GWT)、深圳京基100(KK100)和天津高银117大楼(TJ117)是位于不同地域和外形特征不同的超高层建筑,其建筑高度分别为432.00、441.80 m和596.25 m,风荷载和居住者的舒适性是影响这3栋建筑结构设计的重要因素。采用模型的风洞试验方法分析对比这3栋超高层建筑的气动荷载特性,采用局部空气动力学措施(LAS)对其风振响应和风致荷载进行控制,并和采用调质阻尼器(TMD)方法的控制效果进行比较。结果表明:TJ117具有最佳的气动外形,GWT相比最差是由于其在敏感风向斯托罗哈数最高导致在100 a重现期风速处于涡激共振状态,从而使得采用LAS在GWT上的减振效果最好,且在控制风致荷载上LAS的控制效果甚至要略好于TMD方法,LAS对于GWT的10 a重现期加速度的控制在无干扰情况下可以接近TMD的控制效果,即使受到东塔干扰作用,其控制效果仍可达到TMD控制效果的40.5%,相比TMD实施所需的高成本,LAS是一种较为经济易行的方法。 相似文献
10.
风荷载是超高层建筑结构设计的重要控制荷载,在超高层项目的前期方案阶段进行合理的体型比选和优化,有利于合理把控风荷载从而控制方案工程造价。本研究以高宽比、宽厚比和平面外形等因素作为变化参数设计一系列研究工况,借助CFD数值模拟手段进行模拟研究,分析各参数对主体结构的平均风荷载影响,研究表明超高层建筑的体型参数存在一定的合理区间范围,建筑方案设计阶段需要风工程师提前介入辅助开展抗风优化和选型工作。 相似文献
11.
本文对10个典型的超高层建筑刚性模型进行了测量表面风压的风洞试验,获得了各测量层的阻力、升力和扭矩系数的平均值和根方差。讨论了各测量层风荷载系数随风向角的变化规律,以及高宽比和断面长宽比对方形及矩形建筑风荷载的影响。结果表明,倒角方形、Y形和三角形建筑的风荷载均小于方形与矩形建筑;方形建筑高宽比的增大导致升力系数的根方差明显增大;矩形建筑断面长宽比的增大则使阻力系数的平均值、根方差减少,而升力系数的根方差增大;D类和B类风场中的平均气动力系数相近,而D类风场中脉动气动力系数的根方差大于B类风场。 相似文献
12.
13.
高层建筑顺风向脉动荷载相干性研究 总被引:3,自引:0,他引:3
在确定高层建筑顺风向风致响应及等效静力风荷载时,顺风向荷载的竖向相干函数是非常重要的因素之一。目前的大多数研究均是以风速的相干函数来代替风压的相干函数,导致计算结果的误差较大。根据多个高层建筑模型表面测压风洞试验结果,详细分析高层建筑脉动阻力在B、D两类风场中的竖向相干特性,给出顺风向阻力竖向相干函数衰减指数CDz的公式,并与有关文献中提出的Davenport、Shiotani、ECCS等三种风速相干函数的表达公式进行比较,指出阻力相干性要明显大于风速相干性。结合准定常理论,计算一栋实际高层建筑的顺风向风致响应。结果表明:利用给出的阻力竖向相干函数得到的结果与根据风洞试验数据计算的结果相吻合,而其他几种表达公式导致的响应误差则较大,最大可达30%。 相似文献
14.
周边建筑对低矮建筑平屋面风荷载的干扰因子 总被引:1,自引:0,他引:1
低矮建筑通常都是成群出现的,周边建筑对被包围建筑的风荷载存在干扰效应。通过刚性模型表面测压风洞试验对被同类周边建筑所包围的平屋面低矮建筑表面风压系数进行测量,分析周边建筑的建筑面积密度、相对高度及排列方式对被包围建筑平屋面上的最大局部负风压及最大屋面升力的干扰因子的影响。试验结果显示,最大局部负风压的干扰因子除少数周边建筑面积密度很低或相对高度较矮时大于1.0外,多数情况下都小于1.0;所有存在周边建筑的试验工况中最大屋面升力的干扰因子总是小于1.0;两个干扰因子都随周边建筑面积密度的增大而减小;当周边建筑的相对高度小于1.0时,两个干扰因子都随周边建筑相对高度的增大而减小,但当周边建筑的相对高度大于1.0时,两个干扰因子对周边建筑相对高度的变化不敏感。基于上述试验结果,将两个干扰因子拟合成周边建筑面积密度及相对高度的函数形式,为低矮建筑的设计提供依据,为建筑结构荷载规范的修订提供参考。 相似文献
15.
用风洞试验方法在B、D两种地貌下研究了CAARC高层建筑标准模型在不同高度处的顺风向和横风向风荷载的功率谱特性和相干特性。结果显示:不同高度的无因次风荷载功率谱密度具有较好的一致性;在顺风向,不同高度风荷载间的相干特性显示出指数式的衰减规律;在横风向,风荷载在漩涡脱落频率附近有很强的相关性,相干函数值接近于1。根据风荷载沿结构高度变化的特征,进一步采用拟合方法确定了各层风荷载的功率谱密度和层间荷载相干函数的经验公式,建立了层风荷载谱数学模型,并给出了以此为基础计算标准模型风振响应的计算流程。将按照本文模型计算得到的广义力功率谱与高频底座力天平试验的结果作比较,结果吻合较好,证明了本文所提出模型的正确性。 相似文献
16.
Peng HUANG Ling TAO Ming GU Yong QUAN 《Frontiers of Structural and Civil Engineering》2018,12(3):300-317
Gable roofs with overhangs (eaves) are the common constructions of low-rise buildings on the southeastern coast of China, and they were vulnerable to typhoons from experience. The wind pressure distributions on gable roofs of low-rise buildings are investigated by a series of wind tunnel tests which consist of 99 test cases with various roof pitches, height-depth ratios and width-depth ratios. The block pressure coefficients and worst negative (block) pressure coefficients on different roof regions of low-rise buildings are proposed for the main structure and building envelope, respectively. The effects of roof pitch, height-depth ratio, and width-depth ratio on the pressure coefficients of each region are analyzed in detail. In addition, the pressure coefficients on the roofs for the main structure and building envelope are fitted according to roof pitch, height-depth ratio and width-depth ratio of the low-rise building. Meanwhile, the rationality of the fitting formulas is verified by comparing the fitting results with the codes of different countries. Lastly, the block pressure coefficients and worst negative pressure coefficients are recommended to guide the design of low-rise buildings in typhoon area and act as references for the future’s modification of wind load codes. 相似文献
17.