首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大型风力发电机复合材料叶片的强度、刚度和抵抗屈曲等结构力学特性对风机的性能及寿命有重要的影响。文章结合MATLAB和ANSYS有限元建模方法,建立了含有铺层信息的复合材料叶片三维有限元模型,对5MW风力发电机叶片进行了静态结构力学特性分析;定义了两种极端运行工况,分析和计算了极端工况载荷作用下的叶尖位移及力学特性,得到了应力最大的关键区域及屈曲特征。将仿真分析结果与FAST软件计算结果进行对比,验证了该方法的有效性,为进一步地分析和铺层厚度优化提供了可行的方法和参考依据。  相似文献   

2.
大型水平轴式风电叶片的结构设计   总被引:1,自引:0,他引:1  
风电叶片是风力发电设备的关键部件之一,其制造成本占总成本的20%~30%.叶片结构是叶片捕获风能的保证,并直接影响风力发电设备的运行寿命.因此,叶片结构设计的好坏在很大程度上决定了风力发电设备的可靠性和利用风能的成本.文章从材料、结构形式、铺层设计、结构分析等4个方面详细地阐述了风电叶片结构的设计技术.  相似文献   

3.
基于BLADED软件平台,对TMT40.3大型风力机叶片的气动性能进行了分析.分析结果表明:TMT40.3大型风力机叶片应用在GL3A风场时的额定功率能达到1 650 kW,所承受的疲劳强度和极限载荷均能满足该款风力机叶片的设计要求,在叶尖速比为7.8~11.4的风能利用系数均在0.46以上,最高可达0.486,具有较好的气动性能和较宽的风速适应范围.  相似文献   

4.
This paper presents a numerical validation of a thin‐walled beam (TWB) finite element (FE) model of a realistic wind turbine rotor blade. Based on the theory originally developed by Librescu et al. and later extended to suit FE modelling by Phuong, Lee and others, this computationally efficient yet accurate numerical model is capable of capturing most of the features found in large blades including thin‐walled hollow cross section with variable thickness along the section's contour, inner reinforcements, arbitrary material layup and non‐linear anisotropic fibre‐reinforced composites; the present application is, for the time being, restricted to linearity. This one‐dimensional (1D) FE model allows retaining information of different regions of the blade's shell and therefore approximates the behaviour of more complex three‐dimensional (3D) shell or solid FE models more accurately than typical 1D FE beam models. A 9.2 m rotor blade, previously reported in specialized literature, was chosen as a case study to validate the static and dynamic behaviour predicted by a TWB model against an industry‐standard 3D shell model built in a commercial software tool. Given the geometric and material complexities involved, an excellent agreement was found for static deformation curves, as well as a good prediction of the lowest frequency modes in terms of resonance frequencies, mode shapes and frequency response functions; the highest (sixth) frequency mode shows only a fair agreement as expected for an FE model. It is concluded that despite its simplicity, a TWB FE model is sufficiently accurate to serve as a design tool for the recursive analyses required during design and optimization stages of wind turbines using only readily available computational tools. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
For wind turbine blades with the increased slenderness ratio, flutter instability may occur at lower wind and rotational speeds. For long blades, at the flutter condition, relative velocities at blade sections away from the hub center are usually in the subsonic compressible range. In this study, for the first time for composite wind turbine blades, a frequency domain classical flutter analysis methodology has been presented including the compressibility effect only for the outboard blade sections, which are in the compressible flow regime exceeding Mach 0.3. Flutter analyses have been performed for the baseline blade designed for the 5‐MW wind turbine of NREL. Beam‐blade model has been generated by making analogy with the structural model of the prewisted rotating thin‐walled beam (TWB) and variational asymptotic beam section (VABS) method has been utilized for the calculation of the sectional properties of the blade. To investigate the compressibility effect on the flutter characteristics of the blade, frequency and time domain aeroelastic analyses have been conducted by utilizing unsteady aerodynamics via incompressible and compressible indicial functions. This study shows that with use of compressible indicial functions, the effect of compressibility can be taken into account effectively in the frequency domain aeroelastic stability analysis of long blades whose outboard sections are inevitably in the compressible flow regime at the onset of flutter.  相似文献   

6.
结合有限元分析方法和叶片振动试验方法,利用最少的试验设备,检测出叶片危险部位的相应数据,以提高疲劳试验的可靠性。通过理论计算和数学建模相结合的方法,确定叶片阴阳两面最大变形位置,使试验条件更符合叶片的实际工况。分析试验结果显示,被测叶片达到了设计标准的要求。  相似文献   

7.
针对多种受损工况下的风机叶片损伤诊断问题,文章基于模态理论对受损前和受损后的风机叶片进行位移和应变模态分析.首先建立风机叶片的三维模型并对其进行有限元分析;然后模拟叶片两位置不同的损伤状况,比较各工况下位移模态曲线、应变模态曲线和应变模态差分曲线在受损前后的变化规律,进而对叶片进行损伤辨识;最后选取应变模态变化率和由差...  相似文献   

8.
Most blades available for commercial-grade wind turbines incorporate a straight, span-wise profile and airfoil-shaped cross-sections. These blades are found to be very efficient at low and medium wind speeds compared with the potential energy that can be extracted. This paper explores the possibility of increasing the efficiency of the blades by modifying the blade design to incorporate a swept edge. The design intends to maintain efficiency at low to medium wind speeds by selecting the appropriate orientation and size of the airfoil cross-sections based on an oncoming wind speed and given constant rotation rate. The torque generated from a blade with straight-edge geometry is compared with that generated from a blade with a swept edge as predicted by CFD simulations. To validate the simulations, the experimental curve of the NTK500/41 turbine using LM19.1 blades is reproduced using the same computational conditions. In addition, structural deformations, stress distributions and structural vibration modes are compared between these two different turbine blade surfaces.  相似文献   

9.
This study aims to develop a fatigue life prediction method and to identify the effect that a 10-minute mean wind speed distribution has on the fatigue life of a small-scale wind turbine composite blade. First, combining the von Karman isotropic turbulence model and the Weibull distribution for a 10-minute mean wind speed provided us with the 1-Hz full wind history for a specific time period. Accordingly, the fatigue stress spectra at the blade's fatigue-critical locations (FCLs) were created by applying a stress tensor, in which the interaction between flapwise and edgewise bending moments was taken into consideration. The fatigue life of a composite blade can be predicted with a reliability R = 95% by applying the PSN curve obtained from the constant amplitude fatigue tests and rainflow cycle counting, and cumulative damage rule to the fatigue stress spectra. To acquire the second-order regression equation, nonlinear regression analysis was performed on the fatigue lives, which were simulated by using the proposed fatigue life prediction method. In this equation, the variables were the shape parameter, K, and the scale parameter, C, of the Weibull distribution for a 10-minute mean wind speed. The effects of the Weibull parameters on fatigue life were evaluated through the sensitivity analysis of the equations.  相似文献   

10.
为研究风电叶片玻璃纤维复合材料在疲劳工况下的损伤模式,文章基于声发射技术提出了一种主成分聚类分析和BP神经网络相结合的材料损伤识别模型。首先,采集损伤声发射信号,并提取相关参数进行分析,对不同疲劳损伤进行分类;其次,对数据进行主成分分析,以降低噪声信号,去掉冗余信息;再次,对主成分进行聚类分析,将样本分簇并找出各簇与损伤之间的对应关系;最后,基于BP神经网络建立损伤识别模型,并基于试验数据对识别网络进行测试训练。训练结果表明,识别模型对3种未知类型疲劳损伤的识别率均高于90%,对未知损伤具有较好的识别能力。  相似文献   

11.
One serious challenge of energy systems design, wind turbines in particular, is the need to match the system operation to the variable load. This is so because system efficiency drops at off‐design load. One strategy to address this challenge for wind turbine blades and obtain a more consistent efficiency over a wide load range, is varying the blade geometry. Predictable morphing of wind turbine blade in reaction to wind load conditions has been introduced recently. The concept, derived from fish locomotion, also has similarities to spoilers and ailerons, known to reduce flow separation and improve performance using passive changes in blade geometry. In this work, we employ a fully coupled technique on CFD and FEM models to introduce continuous morphing to desired and predetermined blade design geometry, the NACA 4412 profile, which is commonly used in wind turbine applications. Then, we assess the aerodynamic behavior of a morphing wind turbine airfoil using a two‐dimensional computation. The work is focused on assessing aerodynamic forces based on trailing edge deflection, wind speed, and material elasticity, that is, Young's modulus. The computational results suggest that the morphing blade has superior part‐load efficiency over the rigid NACA blade. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
通过气固两相流实验考查了风机叶片材料在不同风速、不同粒径下的冲蚀磨损率。采用FLUENT软件对相应实验条件进行数值模拟表明:随着风速的提高,磨粒所具有的动能与切应力也随之增大,当风速由7.9 m/s提高到17.4 m/s时,达到最大冲蚀率为0.004 32 kg/(m2·s);冲蚀率随着粒径的增大呈现先上升后下降的趋势,当粒径为0.109~0.212 mm时,磨粒对试样的最大冲蚀率为0.001 51 kg/(m2·s)。模拟验证了实验所得的冲蚀规律,并预测了各实验条件下的最大理论冲蚀率。  相似文献   

13.
Effects of leading edge erosion on wind turbine blade performance   总被引:1,自引:0,他引:1  
This paper presents results of a study to investigate the effect of leading edge erosion on the aerodynamic performance of a wind turbine airfoil. The tests were conducted on the DU 96‐W‐180 wind turbine airfoil at three Reynolds numbers between 1 million and 1.85 million, and angles of attack spanning the nominal low drag range of the airfoil. The airfoil was tested with simulated leading edge erosion by varying both the type and severity of the erosion to investigate the loss in performance due to an eroded leading edge. Tests were also run with simulated bugs on the airfoil to assess the impact of insect accretion on airfoil performance. The objective was to develop a baseline understanding of the aerodynamic effects of varying levels of leading edge erosion and to quantify their relative impact on airfoil performance. Results show that leading edge erosion can produce substantial airfoil performance degradation, yielding a large increase in drag coupled with a significant loss in lift near the upper corner of the drag polar, which is key to maximizing wind turbine energy production. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Two shallow-angled symmetric and asymmetric skins, with off-axis fiber angles of less than 45°, were proposed and employed to a 5 MW wind turbine blade. For the symmetric configuration, shallow-angled skins were applied to both the pressure and suction sides of the blade, while, for the asymmetric configuration, only the pressure side was implemented with a shallow-angled skin, keeping the conventional 45-degree-angled skin for the suction side. The blade tip deflection, modal frequencies, buckling stability, and failure index were computed for off-axis fiber angles of 45°, 35°, and 25°. The use of shallow-angled skins improved blade bending stiffness and strength. The buckling resistance decreased for symmetric skins and remained unchanged for asymmetric skins; the former case was compensated for by increasing the core thickness. For both skin configurations, a reduction in the blade failure index of up to 18% and 38%, and mass reductions of up to 8% and 13% were demonstrated for the 35° and 25° shallow-angled skins, respectively.  相似文献   

15.
Yu Wang  Yeqiang Deng  Yilu Liu  Lu Qu  Xishan Wen  Lei Lan  Jian Wang 《风能》2019,22(8):1071-1085
The blades of a wind turbine rotate during normal operation. To investigate the influence of blade rotation on the lightning‐attracting ability of a wind turbine, a discharge test platform is designed for scaled wind turbines. The 50% impulse voltages and flash probabilities of the scaled wind turbines with gap distances of 1 to 8 m in the static and rotary conditions are determined by using the discharge test and selective discharge test. The discharge test for a single wind turbine with a gap of 1 to 2 m indicates that the breakdown voltages of the gap between the scaled turbine and electrodes increases with an increase in the blade rotation speed. However, the discharge test with a gap distance of 4 to 8 m indicates that the breakdown voltage of the fan decreases with an increase in the blade rotation speed. The test results of the scaled dual wind turbines experiment have the same rules. To explain this phenomenon, the influence of wind speed on the space‐charge distribution and electrical field intensity of corona discharge is simulated in the background of a target thundercloud. The rotation of the fan reduces the space‐charge density near the area of the blade tip, which leads to an increase in the field strength near the blade tip of the wind turbine and a decrease in the field strength away from the blade tip. This influence varies in short and long air gap, resulting in opposite relationships between discharge voltage and distance from the tip of the turbine. The results can provide a reference for the lightning protection of wind turbines.  相似文献   

16.
基于风力机整机刚柔耦合模型,文章提出了一种叶片动态气弹扭转变形分析的新方法。该方法采用SIMPACK和AeroDyn软件联合数值仿真对风力机在几种恶劣风况下进行动力学分析,通过对分析结果的变换处理,进而得到叶片在复杂工况下的动态气弹变形数据。采用该方法,重点分析了叶片气弹扭转变形对风力机气动功率及气弹稳定性的影响。该方法为大型风电叶片的气弹特性评价以及气弹剪裁设计提供了一种新的技术手段。  相似文献   

17.
为进行三维风电叶片振动系统固有频率相关性分析,采用MATLAB和ANSYS共同建立了风电叶片三维有限元参数模型,并分析了叶片固有振动特性.考虑系统随机结构参数对风电叶片固有振动的影响,运用将Monte Carlo与ANSYS相结合的方法对叶片固有振动特性进行相关性分析,进而判断其对随机结构参数的敏感性,形成了一种叶片结...  相似文献   

18.
Ozan Gzcü  Mathias Stolpe 《风能》2020,23(5):1317-1330
The wind turbine industry is designing large MW size turbines with very long blades, which exhibit large deflections during their operational life. These large deflections decrease the accuracy of linear models such as linear finite element and modal‐based models, in which the structure is represented by linear mode shapes. The aim of this study is to investigate the competence of the mode shapes to represent the large blade responses in normal operation load cases. For this purpose, blade deflections are projected onto the linear modal space, swept by mode shape vectors. The projection shows the contribution of each mode and the projection error. The blade deflections are calculated by a nonlinear aero‐servo‐elastic solver for power production fatigue load cases with normal turbulence. The mode shapes are calculated at the steady‐state deflected blade position computed at different wind speeds. Three reference turbine blades are used in the study to evaluate the effects of various blade design parameters such as length, stiffness, mass, and prebend. The results show that although the linear mode shapes can represent the flapwise and edgewise deflections accurately, axial and torsional deflections cannot be captured with good accuracy. The geometric nonlinear effects are more apparent in the latter directions. The results indicate that the blade deflections occur beyond the linear assumptions.  相似文献   

19.
This paper presents results out of investigations of the DEBRA‐25 wind turbine blades. Almost unique in the history of modern wind energy, these blades were in operation for 18 years next to a weather station and were investigated afterward. Therefore, the loads experienced in the operational life could be post‐processed accurately with the measured data of the weather station and the turbine. The blades are made of materials that are similar with today's wind turbines. Furthermore, intensive laboratory tests and free field tests have been carried out, and all load assumptions and data and results are still available today. The results include experimental investigations on the moisture content of the load‐carrying material, static and fatigue behavior of the material, the relaxation of the coupling joints, the natural frequencies of the blade and a full scale static blade test. It is shown that the structural performance of the DEBRA‐25 service blades is comparable with modern wind turbine blades. Although some damage was found by visual inspection, the service blade of the DEBRA‐25 showed excellent mechanical behavior in the full scale blade test. Only small changes of the edgewise eigenfrequencies were detected. The pre‐tensioning forces of the IKEA bolts, where the two blade parts are connected, were measured and were still adequate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
如果解决不好离网型风力发电机的大风限速保护问题,就会大大地降低其可靠性和安全性.文章从风轮与发电机的匹配人手,一改传统离网型风力发电机最佳功率匹配运行为峰前匹配运行,使风力发电机在大风时保持较低的风能利用系数,具有大风时的限速保护作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号