首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The ability to edit the yeast genome with relative ease has contributed to the organism being a model eukaryote for decades. Most methods for deleting, inserting or altering genomic sequences require transformation with DNA that carries the desired change and a selectable marker. One‐step genome editing methods retain the selectable marker. Seamless genome editing methods require more steps and a marker that can be used for both positive and negative selection, such as URA3. Here we describe the PCR‐based 50:50 method for seamless genome editing, which requires only two primers, one PCR with a URA3 cassette, and a single yeast transformation. Our method is based on pop‐in/pop‐out gene replacement and is amenable to the facile creation of genomic deletions and short insertions or substitutions. We used the 50:50 method to make two conservative loss‐of‐function mutations in MATα1, with results suggesting that the wild‐type gene has a new function outside of that presently known. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 technology is an important tool for genome editing because the Cas9 endonuclease can induce targeted DNA double‐strand breaks. Targeting of the DNA break is typically controlled by a single‐guide RNA (sgRNA), a chimeric RNA containing a structural segment important for Cas9 binding and a 20mer guide sequence that hybridizes to the genomic DNA target. Previous studies have demonstrated that CRISPR–Cas9 technology can be used for efficient, marker‐free genome editing in Saccharomyces cerevisiae. However, introducing the 20mer guide sequence into yeast sgRNA expression vectors often requires cloning procedures that are complex, time‐consuming and/or expensive. To simplify this process, we have developed a new sgRNA expression cassette with internal restriction enzyme sites that permit rapid, directional cloning of 20mer guide sequences. Here we describe a flexible set of vectors based on this design for cloning and expressing sgRNAs (and Cas9) in yeast using different selectable markers. We anticipate that the Cas9–sgRNA expression vector with the URA3 selectable marker (pML104) will be particularly useful for genome editing in yeast, since the Cas9 machinery can be easily removed by counter‐selection using 5‐fluoro‐orotic acid (5‐FOA) following successful genome editing. The availability of new vectors that simplify and streamline the technical steps required for guide sequence cloning should help accelerate the use of CRISPR–Cas9 technology in yeast genome editing. Vectors pT040, pJH001, pML104 and pML107 have been deposited at Addgene ( www.addgene.org ). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The cloning of DNA fragments into vectors or host genomes has traditionally been performed using Escherichia coli with restriction enzymes and DNA ligase or homologous recombination‐based reactions. We report here a novel DNA cloning method that does not require DNA end processing or homologous recombination, but that ensures highly accurate cloning. The method exploits the efficient non‐homologous end‐joining (NHEJ) activity of the yeast Kluyveromyces marxianus and consists of a novel functional marker selection system. First, to demonstrate the applicability of NHEJ to DNA cloning, a C‐terminal‐truncated non‐functional ura3 selection marker and the truncated region were PCR‐amplified separately, mixed and directly used for the transformation. URA3+ transformants appeared on the selection plates, indicating that the two DNA fragments were correctly joined by NHEJ to generate a functional URA3 gene that had inserted into the yeast chromosome. To develop the cloning system, the shortest URA3 C‐terminal encoding sequence that could restore the function of a truncated non‐functional ura3 was determined by deletion analysis, and was included in the primers to amplify target DNAs for cloning. Transformation with PCR‐amplified target DNAs and C‐terminal truncated ura3 produced numerous transformant colonies, in which a functional URA3 gene was generated and was integrated into the chromosome with the target DNAs. Several K. marxianus circular plasmids with different selection markers were also developed for NHEJ‐based cloning and recombinant DNA construction. The one‐step DNA cloning method developed here is a relatively simple and reliable procedure among the DNA cloning systems developed to date. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Epitope tagging is the insertion of a short stretch of amino acids constituting an epitope into another protein. Tagged proteins can be identified by Western, immunoprecipitation and immunofluorescence assays using pre-existing antibodies. We have designed vectors containing the URA3 gene flanked by direct repeats of epitope tags. We use the polymerase chain reaction (PCR) to amplify the tag-URA3-tag cassette such that the ends of the PCR fragments possess homology to the gene of interest. In vivo recombination is then used to direct integration of the fragment to the location of interest, and transformants are selected by their Ura+ phenotype. Finally, selection for Ura? cells on 5-fluoro-orotic acid plates yields cells where recombination between the repeated epitopes has ‘popped out’ the URA3 gene, leaving a single copy of the epitope at the desired location. PCR epitope tagging (PET) provides a rapid and direct technique for tagging that does not require any cloning steps. We have used PET to tag three Saccharomyces cerevisiae proteins, Cln1, Sic1 and Est1.  相似文献   

5.
In order to reduce the number of classical DNA manipulation and ligation steps in the generation of yeast expression plasmids, a series of vectors is described which facilitate the assembly of such plasmids by the more efficient ‘recombination in vivo’ technique. Two sets of vectors were developed. The first set, called ‘expression vectors’, contains an expression cassette with a yeast promoter and the PGK terminator separated by a polylinker, and an Escherichia coli replicon. Subcloning in these vectors of a DNA fragment generates a ‘transfer vector’ which is compatible with the second set of E. coli–yeast shuttle vectors. This set of ‘recombination vectors’ contains a cassette for a functional copy of a gene complementing a host strain auxotrophy or a bacterial gene conferring an antibiotic resistance to the plasmid-bearing host. Plasmid copy numbers can be modulated through the use of URA3 or URA3-d as the selective marker together with an ARS/CEN and the 2 μm replicon. Integration of the cloned DNAs into the yeast linearized replicative vectors occurs by recombination between homologous flanking sequences during transformation in yeast or E. coli. All the vectors contain the origin of replication of phage f1 and allow the generation of single-stranded DNA in E. coli for sequencing or site-directed mutagenesis. The sequence presented (Figure 1a) has been entered in the EMBL data library under Accession Number Z48747.  相似文献   

6.
Repeated gene manipulations can be performed in yeast by excision of an introduced marker. Cassette modules containing a marker flanked by two direct repeat sequences of hisG or loxP have often been used for marker recycling, but these leave one copy of the repeats in the chromosome after excision. Genomic copies of a repeat can cause increased mistargeting of constructs containing the same repeats or unexpected chromosomal rearrangements via intra- or interchromosomal recombinations. Here, we describe a novel marker recycling procedure that leaves no scar in the genome, which we have designated seamless gene deletion. A 40 base sequence derived from an adjacent region to the targeted locus was placed in an integrating construct to generate direct repeats after integration. Seamless HIS3 deletion was achieved via a PCR fragment that consisted of a URA3 marker attached to a 40 base repeat-generating sequence flanked by HIS3 targeting sequences at both ends. Transformation of the designed construct resulted in his3 disruption and the generation of 40 base direct repeats on both sides of URA3 in the targeted locus. The resulting his3::URA3 disruptants were plated on 5-fluoroorotic acid medium to select for URA3 loss. All the selected colonies had lost URA3 precisely by recombination between the repeats, resulting in his3 deletion without any extraneous sequences left behind in the chromosome.  相似文献   

7.
The basidiomycetous yeast Pseudozyma antarctica is a remarkable producer of industrially valuable enzymes and extracellular glycolipids. In this study, we developed a method for targeted gene replacement in P. antarctica. In addition, transformation conditions were optimized using lithium acetate, single‐stranded carrier DNA and polyethylene glycol (lithium acetate treatment), generally used for ascomycetous yeast transformation. In the rice‐derived P. antarctica strain GB‐4(0), PaURA3, a homologue of the Saccharomyces cerevisiae orotidine‐5′‐phosphate decarboxylase gene (URA3), was selected as the target locus. A disruption cassette was constructed by linking the nouseothricine resistance gene (natMX4) to homologous DNA fragments of PaURA3, then electroporated into the strain GB‐4(0). We obtained strain PGB015 as one of the PaURA3 disruptants (Paura3Δ::natMX4). Then the PCR‐amplified PaURA3 fragment was introduced into PGB015, and growth of transformant colonies but not background colonies was observed on selective media lacking uracil. The complementation of uracil‐auxotrophy in PGB015 by introduction of PaURA3 was also performed using lithium acetate treatment, which resulted in a transformation efficiency of 985 CFU/6.8 μg DNA and a gene‐targeting ratio of two among 30 transformants. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Rearrangements within plasmid DNA are commonly observed during transformation of eukaryotic cells. One possible cause of rearrangements may be recombination between repeated sequences induced by some lesions in the plasmid. We have examined the mechanisms of transformation-associated recombination in the yeast Saccharomyces cerevisiae using a plasmid system which allowed the effects of physical state and/or extent of homology on recombination to be studied. The plasmids contain homologous or diverged (19%) repeats of the URA3 genes (from S. cerevisiae or S. carlsbergensis) separated by the genetically detectable ADE2 colour marker. Recombination during transformation for covalently closed circular plasmids was over 100-fold more frequent than during mitotic growth. The frequency of recombination is partly dependent on the method of transformation in that procedures involving lithium acetate or spheroplasting yield higher frequencies than electroporation. When present in the repeats, unique single-strand breaks that are ligatable, as well as double-strand breaks, lead to high levels of recombination between diverged and identical repeats. The transformation-associated recombination between repeat DNAs is under the influence of the RAD52 and RAD1 genes.  相似文献   

9.
Recombinant DNAs are traditionally constructed using Escherichia coli plasmids. In the yeast Saccharomyces cerevisiae, chromosomal gene targeting is a common technique, implying that the yeast homologous recombination system could be applied for recombinant DNA construction. In an attempt to use a S. cerevisiae chromosome for recombinant DNA construction, we selected the single ura3Δ0 locus as a gene targeting site. By selecting this single locus, repeated recombination using the surrounding URA3 sequences can be performed. The recombination system described here has several advantages over the conventional plasmid system, as it provides a method to confirm the selection of correct recombinants because transformation of the same locus replaces the pre‐existing selection marker, resulting in the loss of the marker in successful recombinations. In addition, the constructed strains can serve as both PCR templates and hosts for preparing subsequent recombinant strains. Using this method, several yeast strains that contained selection markers, promoters, terminators and target genes at the ura3Δ0 locus were successfully generated. The system described here can potentially be applied for the construction of any recombinant DNA without the requirement for manipulations in E. coli. Interestingly, we unexpectedly found that several G/C‐rich sequences used for fusion PCR lowered gene expression when located adjacent to the start codon. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This report describes two sets of plasmid vectors that facilitate the identification of regions of complementation in cloned genomic inserts via transposon or insertional mutagenesis. The first set contains ARS-H4 CEN6, a yeast selectable nutritional marker (HIS3, TRP1 or URA3), and neo for selection in Escherichia coli. These plasmids lack the Tn3 transposition immunity region present in pBR322 derived vectors, and are permissive recipients for Tn3 transposon mutagenesis. The second family of plasmids described facilitate gene disruption procedures performed in vitro. These vectors carry disruption cassettes that contain different yeast selectable markers (HIS3, LEU2, TRP1 or URA3) adjacent to the Tn5 neo gene. These genes can be excised as a cassette on a common restriction fragment and introduced into any desired restriction site with selection for kanamycin resistance.  相似文献   

11.
We report the construction of Saccharomyces cerevisiae strains isogenic to W303‐1a that are designed to allow efficient genetic analysis. To facilitate the generation of null alleles of target genes by PCR‐mediated gene disruption, we constructed designer deletion alleles of the ARG4, TRP1 and URA3 genes. In addition, a single pair of oligonucleotide primers were designed that can be used to amplify any of several marker genes for use in PCR‐mediated gene disruption. A new version of the ‘reusable’ hisG‐URA3‐hisG cassette was constructed for use in PCR‐mediated gene disruption. Finally, to facilitate the formation of isogenic diploids by selection, we constructed strains that contain combinations of wild‐type alleles of ADE2, HIS3, LEU2, TRP1 and URA3. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Here we expand the set of tools for genetically manipulating Saccharomyces cerevisiae. We show that puromycin‐resistance can be achieved in yeast through expression of a bacterial puromycin‐resistance gene optimized to the yeast codon bias, which in turn serves as an easy‐to‐use dominant genetic marker suitable for gene disruption. We have constructed a similar DNA cassette expressing yeast codon‐optimized mutant human dihydrofolate reductase (DHFR), which confers resistance to methotrexate and can also be used as a dominant selectable marker. Both of these drug‐resistant marker cassettes are flanked by loxP sites, allowing for their excision from the genome following expression of Cre‐recombinase. Finally, we have created a series of plasmids for low‐level constitutive expression of Cre‐recombinase in yeast that allows for efficient excision of loxP‐flanked markers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In the yeast Saccharomyces cerevisiae, the yeast episomal plasmid (YEp), containing a partial sequence from a natural 2-μm plasmid, has been frequently used to induce high levels of gene expression. In this study, we used Japanese sake yeast natural cir0 strain as a host for constructing an entire 2-μm plasmid with an expression construct using the three-fragment gap-repair method without Escherichia coli manipulation. The 2-μm plasmid contains two long inverted repeats, which is problematic for the amplification by polymerase chain reaction. Therefore, we amplified it by dividing into two fragments, each containing a single repeat together with an overlapping sequence for homologous recombination. TDH3 promoter-driven yEmRFP (TDH3p-yEmRFP) and the URA3 were used as a reporter gene and a selection marker, respectively, and inserted at the 3′ end of the RAF1 gene on the 2-μm plasmid. The three fragments were combined and used for the transformation of sake yeast cir0 ura3- strain. The resulting transformant colonies showed a red or purple coloration, which was significantly stronger than that of the cells transformed with YEp-TDH3p-yEmRFP. The 2-μm transformants were cultured in YPD medium and observed by fluorescence microscopy. Almost all cells showed strong fluorescence, suggesting that the plasmid was preserved during nonselective culture conditions. The constructed plasmid maintained a high copy state similar to that of the natural 2-μm plasmid, and the red fluorescent protein expression was 54 fold compared with the chromosomal integrant. This vector is named YHp, the Yeast Hyper expression plasmid.  相似文献   

14.
A transformation system using the autonomously replicating plasmid in the n-alkane-assimilating and asporogenic diploid yeast, Candida tropicalis, was developed. For the cloning of a DNA fragment containing a potential autonomously replicating sequence (ARS) from the genomic DNA of C. tropicalis, the ura3 mutant obtained using ethylmethane sulfonate as the host and the URA3 gene amplified by PCR using the C. tropicalis genomic DNA as a selectable marker were prepared. Comparison of ARSs among yeasts revealed that the consensus sequence found in S. cerevisiae was also present in C. tropicalis. The autonomously replicating plasmid containing the putative ARS as the shuttle vector, capable of replicating in both E. coli and C. tropicalis, was first constructed. The transformation system using this plasmid, in addition to the integrative transformation system, will be applicable to genetic studies of C. tropicalis.  相似文献   

15.
We have developed the first system for genetic transformation of the multinuclear yeast Dipodascus magnusii. The system is based on a dominant selectable marker and an autonomously replicating sequence. We have constructed a plasmid vector which contains a marker conferring resistance to zeocin and the segment of non-transcribed spacer of D. magnusii ribosomal DNA which supports the autonomous replication of plasmid DNA in yeast cells. Plasmid DNA has been transferred into D. magnusii cells by electroporation. The DNA sequence which is described in this article has been deposited in the EMBL data library under Accession Number Y14587. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
We describe a new cloning-free strategy to delete genes in the opportunistic pathogenic yeast Candida lusitaniae. We first constructed two ura3 Δ strains in C. lusitaniae for their use in transformation experiments. One was deleted for the entire URA3 coding sequence; the other possessed a partial deletion within the coding region, which was used to determine the minimum amount of homology required for efficient homologous recombination by double crossing-over of a linear DNA fragment restoring URA3 expression. This amount was estimated to 200 bp on each side of the DNA fragment. These data constituted the basis of the development of a strategy to construct DNA cassettes for gene deletion by a cloning-free overlapping PCR method. Two cassettes were necessary in two successive transformation steps for the complete removal of a gene of interest. As an example, we report here the deletion of the LEU2 gene. The first cassette was constituted by the URA3 gene flanked by two large fragments (500 bp) homologous to the 5' and 3' non-coding regions of LEU2. After transformation of an ura3 Δ recipient strain and integration of the cassette at the LEU2 locus, the URA3 gene was removed by a second transformation round with a DNA cassette made by the fusion between the 5' and 3' non-coding regions of the LEU2 gene. The overall procedure takes less than 2 weeks and allows the creation of a clean null mutant that retains no foreign DNA sequence integrated in its genome.  相似文献   

17.
For some time, gene disruptions in Candida albicans have been made with the hisG-URA3-hisG ('Ura-blaster') cassette, which can be re-used in successive transformations of a single strain after homologous excision of URA3. However, the hisG repeats are too large for efficient PCR amplification of the entire cassette, so it cannot be used for PCR product-directed gene disruptions. We describe here a gene disruption cassette, URA3-dpl200, with 200 bp flanking repeats that permit efficient PCR amplification. After transformation and integration to produce both arg5::URA3-dpl200 and rim101::URA3-dpl200 alleles, we find that arg5::dpl200 and rim101::dpl200 segregants, respectively, can be obtained. We have used the cassette to create rim101::dpl200/rim101::URA3-dpl200 mutants exclusively through PCR product-directed disruption.  相似文献   

18.
A series of 24 general-purpose yeast plasmid vectors has been constructed. The plasmid series is composed of inter-replaceable cassettes, allowing for easy interconversion of plasmid types. In addition to the usual replication origins, selectable markers and multiple cloning sites (MCS), cassettes dedicated to counter-selection have been constructed. A pair of unique 8 bp restriction enzyme recognition sites flank each type of cassette, FseI in the case of yeast replication origins, AscI in the case of selectable markers, PacI in the case of counter-selectable markers and NotI in the case of the MCS. Thus, any given cassette can be replaced by another cassette of the same type, facilitating interconversion of any given plasmid from one type to another, even after the insertion of DNA into the MCS. Hence, the plasmids have been named pYC for 'yeast cassettes'. The cassettes consist of either NONE, CEN4/ARS or 2micro as replication origin, either URA3, MET2-CA (Lg-MET2) or the G418 resistance gene (the apt1 gene from bacterial transposon Tn903, encoding aminoglycoside phosphotransferase) as selectable markers, either NONE, PMET25-PKA3 or PCHA1-PKA3 as counter-selectable marker, and the MCS, containing recognition sites for AflII, AvrII, BspEI, PmeI, SacII, SalI, SunI, BamHI, EcoRI, HindIII, KpnI, MluI, NarI and SacI (of which the seven first are unique in all plasmids). The counter-selectable markers consist of the PKA3 gene under control of the conditional MET25 or CHA1 promoters. At activating conditions these promoters express the PKA3 gene at toxic levels, facilitating easy selection for loss of plasmid or 'loop-out' of plasmid DNA sequence after genomic integration.  相似文献   

19.
We report here the DNA sequence of a segment (α1006.13: YBLO5) of chromosome II of Saccharomyces cerevisiae, extending over 32·5 kb. The segment contains 26 open reading frames (ORFs) from YBLO501 to YBLO526. YBL0505 corresponds to the SEC17 gene and YBL0521 to the KIP1 gene. YBL0516 contains an intron, YBL0513 shows homology with the RAT protein phosphatase and YBL0526 contains a zinc-finger motif. Disruption of 14 genes by insertion of a URA3 cassette has been performed and these mutants were analysed for their mating and sporulation ability, and for their growth on different carbon sources. YBL0515 and YBL0526 ORFs seem to be involved in the sporulation process.  相似文献   

20.
The bottom‐fermenting lager yeast Saccharomyces pastorianus has been proposed to be allotetraploid, containing two S. cerevisiae (Sc)‐type and two S. bayanus (Sb)‐type chromosomes. This chromosomal constitution likely explains why recessive mutants of S. pastorianus have not previously been reported. Here we describe the construction of a ura3 deletion strain derived from the lager strain Weihenstephan34/70 by targeted transformation and subsequent loss of heterozygosity (LOH). Initially, deletion constructs of the Sc and Sb types of URA3 were constructed in laboratory yeast strains in which a TDH3p‐hygro allele conferring hygromycin B resistance replaced ScURA3 and a KanMX cassette conferring G‐418 resistance replaced SbURA3. The lager strain was then transformed with these constructs to yield a heterozygous URA3 disruptant (ScURA3+/Scura3Δ::TDH3p‐hygro, SbURA3+/Sbura3Δ::KanMX), which was plated on 5‐fluoroorotic acid (5‐FOA) plates to generate the desired Ura homozygous disruptant (Scura3Δ::TDH3p‐hygro/Scura3Δ::TDH3p‐hygro Sbura3Δ::KanMX/Sbura3Δ::KanMX) through LOH. This ura3 deletion strain was then used to construct a bottom‐fermenting yeast transformant overexpressing ATF1 that encodes an enzyme that produces acetate esters. The ATF1‐overexpressing transformant produced significantly more acetate esters than the parent strain. The constructed ura3? lager strain will be a useful host for constructing strains of relevance to brewing. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号