首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individual wind turbines in a wind farm typically operate to maximize their performance with no consideration of the impact of wake effects on downstream turbines. There is potential to increase power and reduce structural loads within a wind farm by properly coordinating the turbines. To effectively design and analyze coordinated wind turbine controllers requires control‐oriented turbine wake models of sufficient accuracy. This paper focuses on constructing such a model from experiments. The experiments were conducted to better understand the wake interaction and impact on voltage production in a three‐turbine array. The upstream turbine operating condition was modulated in time, and the dynamic impact on the downstream turbine was recorded through the voltage output time signal. The flow dynamics observed in the experiments were used to improve a static wake model often used in the literature for wind farm control. These experiments were performed in the atmospheric boundary layer wind tunnel at the Saint Anthony Falls Laboratory at the University of Minnesota using particle image velocimetry for flow field analysis and turbine voltage modulation to capture the physical evolution in addition to the dynamics of turbine wake interactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The integral output power model of a large-scale wind farm is needed when estimating the wind farm’s output over a period of time in the future. The actual wind speed power model and calculation method of a wind farm made up of many wind turbine units are discussed. After analyzing the incoming wind flow characteristics and their energy distributions, and after considering the multi-effects among the wind turbine units and certain assumptions, the incoming wind flow model of multi-units is built. The calculation algorithms and steps of the integral output power model of a large-scale wind farm are provided. Finally, an actual power output of the wind farm is calculated and analyzed by using the practical measurement wind speed data. The characteristics of a large-scale wind farm are also discussed.  相似文献   

3.
The potential benefits associated with harnessing available momentum and reducing turbulence levels in a wind farm composed of wind turbines of alternating size are investigated through wind tunnel experiments. A variable size turbine array composed of 3 by 8 model wind turbines is placed in a boundary layer flow developed over both a smooth and rough surfaces under neutrally stratified thermal conditions. Cross‐wire anemometry is used to capture high resolution and simultaneous measurements of the streamwise and vertical velocity components at various locations along the central plane of the wind farm. A laser tachometer is employed to obtain the instantaneous angular velocity of various turbines. The results suggest that wind turbine size heterogeneity in a wind farm introduces distinctive flow interactions not possible in its homogeneous counterpart. In particular, reduced levels of turbulence around the wind turbine rotors may have positive effects on turbulent loading. The turbines also appear to perform quite uniformly along the entire wind farm, whereas surface roughness impacts the velocity recovery and the spectral content of the turbulent flow within the wind farm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A simple engineering model for predicting wind farm performance is presented, which is applicable to wind farms of arbitrary size and turbine layout. For modeling the interaction of wind farm with the atmospheric boundary layer (ABL), the wind farm is represented as added roughness elements. The wind speed behind each turbine is calculated using a kinematic model, in which the friction velocity and the wind speed outside the turbine wake, constructed based on the wind farm‐ABL interaction model, are employed to estimate the wake expansion rate in the crosswind direction and the maximum wind speed that can be recovered within the turbine wake, respectively. Validation of the model is carried out by comparing the model predictions with the measurements from wind tunnel experiments and the Horns Rev wind farm. For all validation cases, satisfactory agreement is obtained between model predictions and experimental data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A technoeconomic analysis and optimization of wind turbine size and layout are performed using WAsP software. A case study of a 100‐MW wind farm located in Egypt is considered. Wind atlas for Egypt was used as the input data of the WAsP software. Two turbine models of powers 52 and 80 MW are considered for this project. The wind turbine size and distributions are selected based on the technoeconomic optimization, namely minimum wake effect, maximum annual energy production (AEP) rate, optimum cash flow, and payback period. The future worth method is adopted in economic comparison between the two alternatives, and the cash flow diagram provided the payback period and future worth after the lifetime of the plant. The results showed that (1) the AEP dramatically decreases for a wind farm area less than 15 km2; (2) the turbine spacing, spacing‐to‐diameter ratio, and the setback distances decrease and the wind turbine density and wake losses increase with decreasing the wind turbines size; (3) the total net AEP using G52 is lower than that of using G80 by about 16%; (4) the technoeconomic analysis recommended using G80 as it has higher profit than those of G52 by about $20 million.  相似文献   

6.
The optimization of wind farms with respect to spatial layout is addressed experimentally. Wake effects within wind turbine farms are well known to be deleterious in terms of power generation and structural loading, which is corroborated in this study. Computational models are the predominant tools in the prediction of turbine‐induced flow fields. However, for wind farms comprising hundreds of turbines, reliability of the obtained numerical data becomes a growing concern with potentially costly consequences. This study pursues a systematic complementary theoretical, experimental and numerical study of variations in generated power with turbine layout of an 80 turbine large wind farm. Wake effects within offshore wind turbine arrays are emulated using porous discs mounted on a flat plate in a wind tunnel. The adopted approach to reproduce experimentally individual turbine wake characteristics is presented, and drag measurements are argued to correctly capture the variation in power generation with turbine layout. Experimental data are juxtaposed with power predictions using ANSYS WindModeller simulation suite. Although comparison with available wind farm power output data has been limited, it is demonstrated nonetheless that this approach has potential for the validation of numerical models of power loss due to wake effects or even to make a direct physical prediction. The approach has even indicated useful data for the improvement of the physics within numerical models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The performance assessment of wind farms requires the acquisition of accurate power and wind speed data of each turbine. Nowadays, the nacelle anemometry is widely studied as an option for power performance verification. Therefore, systems to detect the nacelle anemometer faults in a wind farm in operation are necessary for maintenance purposes. In this paper, we propose a method to detect wind speed deviations of the nacelle anemometers by comparing them with the nearby anemometers. This comparison is made through an approach to estimate the wind speed in each nacelle. The approach is based on the discretization of wind speed data using the bin method. The key issue of this proposal is the estimation of the anemometer deviations considering the range of data with lower uncertainty. To this end, an average uncertainty model per bin and direction sector has been integrated into the method. The tests show that using wind speeds higher than 4.5 m s ? 1 gives the lowest uncertainty. Data from two wind farms have been used to test this method, and the obtained results have allowed the detection of problematic anemometers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A large‐eddy simulation framework, dubbed as the Virtual Wind Simulator (VWiS), for simulating turbulent flow over wind turbines and wind farms in complex terrain is developed and validated. The wind turbines are parameterized using the actuator line model. The complex terrain is represented by the curvilinear immersed boundary method. The predictive capability of the present method is evaluated by simulating two available wind tunnel experimental cases: the flow over a stand‐alone turbine and an aligned wind turbine array. Systematic grid refinement studies are carried out, for both single turbine and multi‐turbine array cases, and the accuracy of the computed results is assessed through detailed comparisons with wind tunnel experiments. The model is further applied to simulate the flow over an operational utility‐scale wind farm. The inflow velocities for this case are interpolated from a mesoscale simulation using a Weather Research and Forecasting (WRF) model with and without adding synthetic turbulence to the WRF‐computed velocity fields. Improvements on power predictions are obtained when synthetic turbulence is added at the inlet. Finally the VWiS is applied to simulate a yet undeveloped wind farm at a complex terrain site where wind resource measurements have already been obtained. Good agreement with field measurements is obtained in terms of the time‐averaged streamwise velocity profiles. To demonstrate the ability of the model to simulate the interactions of terrain‐induced turbulence with wind turbines, eight hypothetical turbines are placed in this area. The computed extracted power underscores the significant effect of site‐specific topography on turbine performance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a contribution to wind farm ouput power estimation. The calculation for a single wind turbine involves the use of the power coefficient or, more directly, the power curve data sheet. Thus, if the wind speed value is given, a simple calculation or search in the data sheet will provide the generated power as a result. However, a wind farm generally comprises more than one wind turbine, which means the estimation of power generated by the wind farm as a function of the wind speed is a more complex process that depends on several factors, including the important issue of wind direction. While the concept of a wind turbine power curve for a single wind turbine is clear, it is more subject to discussion when applied to a whole wind farm. This paper provides a simplified method for the estimation of wind farm power, based on the use of an equivalent wake effect coefficient. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Aggregated representation of wind turbine units in the wind farm has been normally adopted for modelling and analysis of dynamic performance, with power variation obtained by change of wind speed in the literature. This paper presents a different scenario of power variation of wind farms by the addition and removal of turbines in wind farms and its implication in modelling and stability of wind farms. The steady-state and dynamic stability with the aggregated model of the wind farm has been analysed with variation in the number of turbine units and has been corroborated with time domain simulation in DIgSILENT Power Factory software. It has been concluded that the variation in the number of wind turbines generators connected to the same transmission line has a minimal impact on the stability in nonseries-compensated line; however, significant impact on the stability has been observed in series-compensated system.  相似文献   

11.
A novel control approach is proposed to optimize the fatigue distribution of wind turbines in a large‐scale offshore wind farm on the basis of an intelligent agent theory. In this approach, each wind turbine is considered to be an intelligent agent. The turbine at the farm boundary communicates with its neighbouring downwind turbines and organizes them adaptively into a wind delivery group along the wind direction. The agent attributes and the event structure are designed on the basis of the intelligent agent theory by using the unified modelling language. The control strategy of the intelligent agent is studied using topology models. The reference power of an individual wind turbine from the wind farm controller is re‐dispatched to balance the turbine fatigue in the power dispatch intervals. In the fatigue optimization, the goal function is to minimize the standard deviation of the fatigue coefficient for every wind turbine. The optimization is constrained such that the average fatigue for every turbine is smaller than what would be achieved by conventional dispatch and such that the total power loss of the wind farm is restricted to a few percent of the total power. This intelligent agent control approach is verified through the simulation of wind data from the Horns Rev offshore wind farm. The results illustrate that intelligent agent control is a feasible way to optimize fatigue distribution in wind farms, which may reduce the maintenance frequency and extend the service life of large‐scale wind farms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
A wind farm layout optimization framework based on a multi‐fidelity optimization approach is applied to the offshore test case of Middelgrunden, Denmark as well as to the onshore test case of Stag Holt – Coldham wind farm, UK. While aesthetic considerations have heavily influenced the famous curved design of the Middelgrunden wind farm, this work focuses on demonstrating a method that optimizes the profit of wind farms over their lifetime based on a balance of the energy production income, the electrical grid costs, the foundations cost, and the cost of wake turbulence induced fatigue degradation of different wind turbine components. A multi‐fidelity concept is adapted, which uses cost function models of increasing complexity (and decreasing speed) to accelerate the convergence to an optimum solution. In the EU‐FP6 TOPFARM project, three levels of complexity are considered. The first level uses a simple stationary wind farm wake model to estimate the Annual Energy Production (AEP), a foundations cost model depending on the water depth and an electrical grid cost function dictated by cable length. The second level calculates the AEP and adds a wake‐induced fatigue degradation cost function on the basis of the interpolation in a database of simulations performed for various wind speeds and wake setups with the aero‐elastic code HAWC2 and the dynamic wake meandering model. The third level, not considered in this present paper, includes directly the HAWC2 and the dynamic wake meandering model in the optimization loop in order to estimate both the fatigue costs and the AEP. The novelty of this work is the implementation of the multi‐fidelity approach in the context of wind farm optimization, the inclusion of the fatigue degradation costs in the optimization framework, and its application on the optimal performance as seen through an economical perspective. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Dynamic models of wind farms with fixed speed wind turbines   总被引:1,自引:0,他引:1  
The increasing wind power penetration on power systems requires the development of adequate wind farms models for representing the dynamic behaviour of wind farms on power systems. The behaviour of a wind farm can be represented by a detailed model including the modelling of all wind turbines and the wind farm electrical network. But this detailed model presents a high order model if a wind farm with high number of wind turbines is modelled and therefore the simulation time is long. The development of equivalent wind farm models enables the model order and the computation time to be reduced when the impact of wind farms on power systems is studied. In this paper, equivalent models of wind farms with fixed speed wind turbines are proposed by aggregating wind turbines into an equivalent wind turbine that operates on an equivalent wind farm electrical network. Two equivalent wind turbines have been developed: one for aggregated wind turbines with similar winds, and another for aggregated wind turbines under any incoming wind, even with different incoming winds.The proposed equivalent models provide high accuracy for representing the dynamic response of wind farm on power system simulations with an important reduction of model order and simulation time compare to that of the complete wind farm modelled by the detailed model.  相似文献   

14.
In order to study the impact of a wind farm on the dynamics of the power system, a significant issue is to develop appropriate equivalent models that allow characterizing the dynamics of all individual wind turbine generators (WTGs) composing the park. In this sense, with the advance of power electronics, direct-driven permanent magnet synchronous generators (PMSGs) have drawn increased interest to wind turbine manufacturers due to their advantages over other variable-speed WTGs. These include the possibility of multi-pole design with a gearless construction that offers slow speed operation and reduced maintenance since no brushes are used, elimination of the excitation system, full controllability for maximum wind power extraction and grid interface, and easiness in accomplishing fault-ride through and grid support. In this way, this paper presents a comprehensive dynamic equivalent model of a wind farm with direct-driven PMSG wind turbines using full-scale converters and its control scheme. The proposed simplified modelling is developed using the state-space averaging technique and is implemented in the MATLAB/Simulink environment. The dynamic performance of the wind farm and its impact on the power system operation is evaluated using the phasor simulation method.  相似文献   

15.
Existing studies of the spatial allocation of wind farms are typically based on turbine power generation efficiency and rarely consider the damage caused by lightning strikes. However, lightning damage seriously affects the economic performance of wind farms because of the high cost of repairing or replacing damaged blades. This paper proposes a method for the spatial optimization of multiple turbines based on lightning protection dependability. Firstly, the lightning protection efficiency of turbine blade protection systems is analyzed by combining the physical mechanisms of lightning leader progression with a conventional electro‐geometric model to develop an electro‐geometric model of turbine blades (EGMTB). Then, the optimized spatial allocation of multiple turbines in a wind farm is investigated using the EGMTB. The results are illustrated from an example wind farm with 1.5 MW turbines, which shows that the optimal spacing between two turbines perpendicular to the prevailing wind direction L is 4R‐6R, where R is the length of a turbine blade. This spacing is shown to effectively shield turbine blades from lightning damage over a wide range of lightning currents (>26‐60 kA). Note that, the suggested L will be smaller considering the influence of lightning polarity as it takes more difficulty developing upward leader (UL) in the condition of positive lightning striking. Experiments verify the effectiveness and correctness of this method.  相似文献   

16.
Rolf‐Erik Keck  Ove Undheim 《风能》2015,18(9):1671-1682
This paper presents a computationally efficient method for using the dynamic wake meandering model to conduct simulations of wind farm power production. The method is based on creating a database, which contains the time and rotor‐averaged wake effect at any point downstream of a wake‐emitting turbine operating in arbitrary ambient conditions and at an arbitrary degree of wake influence. This database is later used as a look‐up table at runtime to estimate the operating conditions at all turbines in the wind farm, thus eliminating the need to run the dynamic wake meandering model at runtime. By using the proposed method, the time required to conduct wind farm simulations is reduced by three orders of magnitude compared with running the standalone dynamic wake meandering model at runtime. As a result, the wind farm production dynamics for a farm of 100 turbines at 10,000 different sets of ambient conditions run on a normal laptop in 1 h. The method is validated against full scale measurements from the Smøla and OWEZ wind farms, and fair agreement is achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Accurately quantifying wind turbine wakes is a key aspect of wind farm economics in large wind farms. This paper introduces a new simulation post‐processing method to address the wind direction uncertainty present in the measurements of the Horns Rev offshore wind farm. This new technique replaces the traditional simulations performed with the 10 min average wind direction by a weighted average of several simulations covering a wide span of directions. The weights are based on a normal distribution to account for the uncertainty from the yaw misalignment of the reference turbine, the spatial variability of the wind direction inside the wind farm and the variability of the wind direction within the averaging period. The results show that the technique corrects the predictions of the models when the simulations and data are averaged over narrow wind direction sectors. In addition, the agreement of the shape of the power deficit in a single wake situation is improved. The robustness of the method is verified using the Jensen model, the Larsen model and Fuga, which are three different engineering wake models. The results indicate that the discrepancies between the traditional numerical simulations and power production data for narrow wind direction sectors are not caused by an inherent inaccuracy of the current wake models, but rather by the large wind direction uncertainty included in the dataset. The technique can potentially improve wind farm control algorithms and layout optimization because both applications require accurate wake predictions for narrow wind direction sectors. © 2013 The Authors. Wind Energy published by John Wiley & Sons, Ltd.  相似文献   

18.
This paper proposes and validates an efficient, generic and computationally simple dynamic model for the conversion of the wind speed at hub height into the electrical power by a wind turbine. This proposed wind turbine model was developed as a first step to simulate wind power time series for power system studies. This paper focuses on describing and validating the single wind turbine model, and is therefore neither describing wind speed modeling nor aggregation of contributions from a whole wind farm or a power system area. The state‐of‐the‐art is to use static power curves for the purpose of power system studies, but the idea of the proposed wind turbine model is to include the main dynamic effects in order to have a better representation of the fluctuations in the output power and of the fast power ramping especially because of high wind speed shutdowns of the wind turbine. The high wind speed shutdowns and restarts are represented as on–off switching rules that govern the output of the wind turbine at extreme wind speed conditions. The model uses the concept of equivalent wind speed, estimated from the single point (hub height) wind speed using a second‐order dynamic filter that is derived from an admittance function. The equivalent wind speed is a representation of the averaging of the wind speeds over the wind turbine rotor plane and is used as input to the static power curve to get the output power. The proposed wind turbine model is validated for the whole operating range using measurements available from the DONG Energy offshore wind farm Horns Rev 2. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Nikolay Dimitrov 《风能》2019,22(10):1371-1389
A procedure for mapping wake‐induced load predictions computed with the dynamic wake meandering model to a computationally efficient surrogate model approximation is defined and demonstrated. Using the mapping function, the load variation can be efficiently estimated for a wind farm with arbitrary layout. The resulting load assessment procedure provides continuous, differentiable output with known analytical derivatives and can be used for applications such as wind turbine layout optimization, estimation of turbine lifetime, and uncertainty analysis.  相似文献   

20.
Met‐ocean conditions may affect the performance of a floating wind turbine, since a harsh climate could lead the system to exceed its operating thresholds and thus to force the machine shutdown. In this paper, it is a proposed methodology to evaluate the effect of met‐ocean conditions on the long‐term dynamic behaviour, and energy production, of a floating wind farm. For a sample of 500 MW farm located off the coast of Aberdeen (Scotland), 20 years of met‐ocean data are generated by means of meteorological reanalysis techniques. A subset of 1000 hourly conditions is selected, by means of a maximum dissimilarity algorithm, and input to a dynamic floating wind turbine model. Numerical results are then interpolated for the whole set of met‐ocean data, using radial basis functions. This approach allows to dramatically reduce the global computation time. Tower inclination and hub acceleration are chosen as relevant operating parameters: the former mainly depends on mean wind speed and direction, being largest at rated wind speed. The latter is also affected by significant wave height, and reaches its highest values when wind and waves are aligned. For each simulation, any machine exceeding the selected safety threshold is considered to be shut down. Assuming continuous operation, the average lifespan capacity factor of the farm is 50.2%; more restrictive tolerances result in a non‐linear reduction of the energy production. This approach may help both at the design and the operational stage, in determining the best trade‐off between energy production and safe operation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号