首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non‐torque loads induced by the wind turbine rotor overhang weight and aerodynamic forces can greatly affect drivetrain loads and responses. If not addressed properly, these loads can result in a decrease in gearbox component life. This work uses analytical modeling, computational modeling and experimental approaches to evaluate two distinct drivetrain designs that minimize the effects of non‐torque loads on gearbox reliability: a modified three‐point suspension drivetrain studied by the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) and the Pure Torque® drivetrain developed by Alstom. In the original GRC drivetrain, the unequal planetary load distribution and sharing were present and they can lead to gear tooth pitting and reduce the lives of the planet bearings. The NREL GRC team modified the original design of its drivetrain by changing the rolling element bearings in the planetary gear stage. In this modified design, gearbox bearings in the planetary gear stage are anticipated to transmit non‐torque loads directly to the gearbox housing rather than the gears. Alstom's Pure Torque drivetrain has a hub support configuration that transmits non‐torque loads directly into the tower rather than through the gearbox as in other design approaches. An analytical model of Alstom's Pure Torque drivetrain provides insight into the relationships among turbine component weights, aerodynamic forces and the resulting drivetrain loads. In Alstom's Pure Torque drivetrain, main shaft bending loads are orders of magnitude lower than the rated torque and hardly affected by wind speed, gusts or turbine operations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
An analytical formulation was developed to estimate the load‐sharing and planetary loads of a three‐point suspension wind turbine drivetrain considering the effects of non‐torque loads, gravity and bearing clearance. A three‐dimensional dynamic drivetrain model that includes mesh stiffness variation, tooth modifications and gearbox housing flexibility was also established to investigate gear tooth load distribution and non‐linear tooth and bearing contact of the planetary gears. These models were validated with experimental data from the National Renewable Energy Laboratory's Gearbox Reliability Collaborative. Non‐torque loads and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox loads and disturb load sharing. Clearance in the carrier bearings reduces the bearing stiffness significantly. This increases the amount of pitching moment transmitted from the rotor to the gear meshes and disturbs the planetary load share, thereby resulting in edge loading. Edge loading increases the likelihood of tooth pitting and planet‐bearing fatigue, leading to reduced gearbox life. Additionally, at low‐input torque, the planet‐bearing loads are often less than the minimum recommended load and thus susceptible to skidding. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Y. Guo  T. Parsons  K. Dykes  R.N. King 《风能》2017,20(3):537-550
This study compares the impact of drivetrain configuration on the mass and capital cost of a series of wind turbines ranging from 1.5 MW to 5.0 MW power ratings for both land‐based and offshore applications. The analysis is performed with a new physics‐based drivetrain analysis and sizing tool, Drive Systems Engineering (DriveSE), which is part of the Wind‐Plant Integrated System Design & Engineering Model. DriveSE uses physics‐based relationships to size all major drivetrain components according to given rotor loads simulated based on International Electrotechnical Commission design load cases. The model's sensitivity to input loads that contain a high degree of variability was analyzed. Aeroelastic simulations are used to calculate the rotor forces and moments imposed on the drivetrain for each turbine design. DriveSE is then used to size all of the major drivetrain components for each turbine for both three‐point and four‐point configurations. The simulation results quantify the trade‐offs in mass and component costs for the different configurations. On average, a 16.7% decrease in total nacelle mass can be achieved when using a three‐point drivetrain configuration, resulting in a 3.5% reduction in turbine capital cost. This analysis is driven by extreme loads and does not consider fatigue. Thus, the effects of configuration choices on reliability and serviceability are not captured. However, a first order estimate of the sizing, dimensioning and costing of major drivetrain components are made which can be used in larger system studies which consider trade‐offs between subsystems such as the rotor, drivetrain and tower. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This paper investigates the relationship between wind turbine main‐bearing loads and the characteristics of the incident wind field in which the wind turbine is operating. For a 2‐MW wind turbine model, fully aeroelastic multibody simulations are performed in 3D turbulent wind fields across the wind turbine's operational envelope. Hub loads are extracted and then injected into simplified drivetrain models of three types of main‐bearing configuration. The main‐bearing reaction loads and load ratios from the simplified model are presented and analysed. Results indicate that there is a strong link between wind field characteristics and the loading experienced by the main bearing(s), with the different bearing configurations displaying very different loading behaviours. Main‐bearing failure rates determined from operational data for two drivetrain configurations are also presented.  相似文献   

6.
The design of a medium‐speed drivetrain for the Technical University of Denmark (DTU) 10‐MW reference offshore wind turbine is presented. A four‐point support drivetrain layout that is equipped with a gearbox with two planetary stages and one parallel stage is proposed. Then, the drivetrain components are designed based on design loads and criteria that are recommended in relevant international standards. Finally, an optimized drivetrain model is obtained via an iterative design process that minimizes the weight and volume. A high‐fidelity numerical model is established via the multibody system approach. Then, the developed drivetrain model is compared with the simplified model that was proposed by DTU, and the two models agree well. In addition, a drivetrain resonance evaluation is conducted based on the Campbell diagrams and the modal energy distribution. Detailed parameters for the drivetrain design and dynamic modelling are provided to support the reproduction of the drivetrain model. A decoupled approach, which consists of global aero‐hydro‐servo‐elastic analysis and local drivetrain analysis, is used to determine the drivetrain dynamic response. The 20‐year fatigue damages of gears and bearings are calculated based on the stress or load duration distributions, the Palmgren‐Miner linear accumulative damage hypothesis, and long‐term environmental condition distributions. Then, an inspection priority map is established based on the failure ranking of the drivetrain components, which supports drivetrain inspection and maintenance assessment and further model optimization. The detailed modelling of the baseline drivetrain model provides a basis for benchmark studies and support for future research on multimegawatt offshore wind turbines.  相似文献   

7.
An engineering approach to determine the ultimate state of pipe bend in the circumferential direction is proposed. The essence of the approach is in the realization of several sequential steps. At the first stage, a separate action of certain groups of external loads by means of the semi-inverse method of Saint Venant is considered. Then, a reduction coefficient for internal moments is determined in the case of the simultaneous action of external bending moments and internal pressure. Finally, a general approach is proposed to the calculation of the ultimate state at the prescribed point of the bend section for the resulting system of internal force factors: the bending moment and tensile force in the circumferential direction, longitudinal and tangential forces. The possibility is indicated for the use of the results obtained to take into account cracks and three-dimensional defects available in the pipe bend.  相似文献   

8.
Y. Guo  J. Keller 《风能》2018,21(2):139-150
Many wind turbine gearboxes require repair or replacement well before reaching the end of their design life. The most common failure is bearing axial cracks, commonly called white etching cracks (WECs), which typically occur in the inner raceways of the high‐speed parallel‐stage rolling element bearings. Although the root causes of WECs are debated, one theory is that they are related to routine dynamic operating conditions and occasional transient events prevalent in wind turbines that can result in high bearing stress and sliding of the rolling elements. This paper examined wind turbine gearbox high‐speed shaft bearing loads and stresses through modeling and full‐scale dynamometer testing. Bearing outer race loads were directly measured and predicted using a variety of modeling tools in normal operations, misaligned conditions, and transient events particularly prone to bearing sliding. Test data and models of bearing loads were well correlated. Neither operational misalignment due to rotor moments nor static generator misalignment affected the bearing loads when compared with pure‐torque conditions. Thus, it is not likely that generator misalignment is a causal factor of WECs. In contrast, during transient events, the bearings experienced alternating periods of high stress, torque reversals, and loads under the minimum requisite at high rotating speeds while showing indications of sliding, all of which could be related to the formation of WECs.  相似文献   

9.
J. Helsen  Y. Guo  J. Keller  P. Guillaume 《风能》2016,19(12):2255-2269
This work investigates the behaviour of the high‐speed stage of a wind turbine gearbox during a transient grid loss event. Dynamometer testing on a full‐scale wind turbine nacelle is used. A combination of external and internal gearbox measurements are analysed. Particular focus is on the characterization of the high‐speed shaft tapered roller bearing slip behaviour. This slipping behaviour is linked to dynamic events by many researchers and described as a potential bearing failure initiator; however, only limited full‐scale dynamic testing is documented. Strain gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing behaviour in detail. It is shown that during the transient event the high‐speed shaft experiences a combined torsional and bending deformation. These unfavourable loading conditions induce roller slip in the bearings during the torque reversals, indicating the potential of the applied load case to go beyond the preload of the tapered roller bearing. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
发动机动态试验台传动轴设计研究   总被引:2,自引:0,他引:2  
发动机动态试验台传动轴的选用应根据发动机情况和试验要求确定。为正确模拟汽车传动系,其传动轴应保证发动机-传动轴-测功机扭振系统的固有频率大于15~20Hz,并尽可能避免在发动机正常转速范围内发生共振。此外,还要有合适的阻尼。动态试验台的传动轴一般由带有橡胶阻尼的联轴器、连接轴和万向节组成,设计中主要考虑扭转刚度、阻尼、弯曲振动和扭振强度等问题。  相似文献   

11.
The dynamic loads on the rollers inside the bearings of large wind turbine gearboxes operating under transient conditions are presented with a focus on identifying conditions leading to slippage of rollers. The methodology was developed using a multi‐body model of the drivetrain coupled with aeroelastic simulations of the wind turbine system. A 5 MW reference wind turbine is considered for which a three‐stage planetary gearbox is designed on the basis of upscaling of an actual 750 kW gearbox unit. Multi‐body dynamic simulations are run using the ADAMS software using a detailed model of the gearbox planetary bearings to investigate transient loads inside the planet bearing. It was found that assembly and pre‐loading conditions have significant influence on the bearing's operation. Also, the load distribution in the gearbox bearings strongly depends on wind turbine operation. Wind turbine start‐up and shut‐down under normal conditions are shown to induce roller slippage, as characterized by loss of contacts and impacts between rollers and raceways. The roller impacts occur under reduced initial pre‐load on opposite sides of the load zone followed by stress variation, which can be one of the potential reasons leading to wear and premature bearing failures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Large wind turbine blades are being developed at lengths of 75–100 m, in order to improve energy capture and reduce the cost of wind energy. Bending loads in the inboard region of the blade make large blade development challenging. The “biplane blade” design was proposed to use a biplane inboard region to improve the design of the inboard region and improve overall performance of large blades. This paper focuses on the design of the internal “biplane spar” structure for 100-m biplane blades. Several spars were designed to approximate the Sandia SNL100-00 blade (“monoplane spar”) and the biplane blade (“biplane spar”). Analytical and computational models are developed to analyze these spars. The analytical model used the method of minimum total potential energy; the computational model used beam finite elements with cross-sectional analysis. Simple load cases were applied to each spar and their deflections, bending moments, axial forces, and stresses were compared. Similar performance trends are identified with both the analytical and computational models. An approximate buckling analysis shows that compressive loads in the inboard biplane region do not exceed buckling loads. A parametric analysis shows biplane spar configurations have 25–35% smaller tip deflections and 75% smaller maximum root bending moments than monoplane spars of the same length and mass per unit span. Root bending moments in the biplane spar are largely relieved by axial forces in the biplane region, which are not significant in the monoplane spar. The benefits for the inboard region could lead to weight reductions in wind turbine blades. Innovations that create lighter blades can make large blades a reality, suggesting that the biplane blade may be an attractive design for large (100-m) blades.  相似文献   

13.
大功率风电机组传动链关键部件柔性直接影响机组扭振特性及疲劳寿命,提出考虑齿轮柔性与啮合柔性的传动链有限元建模及扭振特性分析。首先,基于实际双馈风电机组传动链结构、材料属性与几何参数,考虑齿轮箱内齿轮柔性与齿轮啮合柔性,结合叶片、轮毂、主轴和发电机转子,建立风电机组传动链多柔体有限元模型。其次,基于有限元模态分析理论,提出一种基于矢量位移云图筛选扭振频率的分析方法,获取计及齿轮全柔性影响的风电机组中、低频范围的扭振模态,并与不同传动链模型结果进行比较,验证该文所建模型的有效性。最后,分别分析不同齿轮柔性和齿轮啮合柔性对传动链扭振频率和模态的影响。结果表明,该文所建模型不仅能反映传动链扭振固有的低频频率,而且能反映弯扭耦合产生的中频扭振频率,且相比齿轮啮合柔性,齿轮柔性系数影响传动链高频扭振特性明显。  相似文献   

14.
Wind turbines are often plagued by premature component failures, with drivetrain bearings being particularly subjected to these failures. To identify failing components, vibration condition monitoring has emerged and grown substantially. The fast Fourier transform (FFT) is the major signal processing method of vibrations. Recently, the wavelet transforms have been used more frequently in bearing vibration research, with one alternative being the discrete wavelet transform (DWT). Here, the low‐frequency component of the signal is repeatedly decomposed into approximative and detailed coefficients using a predefined mother wavelet. An extension to this is the wavelet packet transform (WPT), which decomposes the entire frequency domain and stores the wavelet coefficients in packets. How wavelet transforms and FFT compare regarding fault detection in wind turbine drivetrain bearings has been largely overlooked in literature when applied on field data, with non‐ideal placement of sensors and uncertain parameters influencing the measurements. This study consists of a comprehensive comparison of the FFT, a three‐level DWT, and the WPT when applied on enveloped vibration measurements from two 2.5‐MW wind turbine gearbox bearing failures. The frequency content is compared by calculating a robust condition indicator by summation of the harmonics and shaft speed sidebands of the bearing fault frequencies. Results show a higher performance of the WPT when used as a field vibration measurement analysis tool compared with the FFT as it detects one bearing failure earlier and more clearly, leading to a more stable alarm setting and avoidable, costly false alarms.  相似文献   

15.
A yield hyper-surface for pipe sections subjected to combinations of normal forces, internal and external pressure, twisting moments, biaxial bending moments and biaxial shearing forces is developed. The formulation is based on the fully plastic capacity of the pipe as determined by the maximum distorsional energy density yield criterion. The solution is obtained by maximizing a lower bound analysis and yields a yield hyper-surface that is exact within the limitations of the formulation. The developments are expressed as universal non-dimensional relationships suitable for limit states design of elevated pipes, submerged pipes, offshore platforms and structural tubular steel members. Previously established interaction relations for bending moments, axial forces and internal pressure are recovered as a special case of the general solution. The merits of using the yield hyper-surface to characterize generalized plastic hinge behavior in elasto-plastic pipe stress analysis are presented.  相似文献   

16.
Bearing failure in wind turbine gearboxes is one of the significant sources of downtime. While it is well-known that bearing failures cause the largest downtime, the failure cause(s) is often elusive. The bearings are designed to satisfy their rolling contact fatigue (RCF) life. However, they often undergo sudden and rapid failure within a few years of operation. It is well-known that these premature failures are attributed to surface damages such as white surface flaking (WSF), white etching cracks (WECs) and axial cracks. In that regard, transient torque reversals (TTRs) in the drivetrain have emerged as one of the primary triggers of surface damage, as explained in this paper. The risk associated with TTRs motivates the need to mitigate TTRs arising in the drivetrain due to various transient events. This paper investigates three TTR mitigation methods. First, two existing devices, namely, the torsional tuned mass damper and the asymmetric torque limiter, are studied to demonstrate their TTR mitigation capabilities. Then, a novel idea of open-loop high-speed shaft mechanical brake control is proposed. The results presented here show that while the torsional tuned mass damper and the asymmetric torque limiter can improve the torsional vibration characteristics of the drivetrain, they cannot mitigate TTRs in terms of eliminating the bearing slip risk associated with TTRs. However, the novel approach proposed here can mitigate TTRs both in terms of improving the torque characteristic in the high-speed shaft and reducing the risk of bearing slip by actuating the high-speed shaft brake at the onset of the transient event. Furthermore, the control method is capable of mitigating TTRs with the mechanical limitations of a pneumatic actuator in terms of bandwidth and initial dead time applied to it. This novel approach allows the wind turbines to protect the gearbox bearings from TTRs using the existing hardware on the turbine.  相似文献   

17.
Blade load measurement errors are assessed by numerical simulation and full‐scale laboratory tests. A theoretical justification of standard experimental practices through strain measurements is presented and applied as a design tool for detailed laboratory tests. The error sources affecting measurements on the composite blade material are cross‐talk effects and the influence of temperature deviations on interpretation of strain measurements. Calibration practices and measurement configurations are considered. The analysis indicates that axial and shear forces may be neglected as sources of cross‐talk in measuring the blade root bending moments. The cross‐talks of the flap bending moment on the edge signal and vice versa should always be quantified in calibration practices. The temperature effect is the most significant source of error and appears to be influenced by the load and thermal condition of the blade and the timescale of temperature variations. The temperature compensation methods are discussed and recommendations are provided to assist in the improvement of the blade load measurement quality. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates the impact of extreme events on the planet bearings of a 5 MW gearbox. The system is simulated using an aeroelastic tool, where the turbine structure is modeled, and MATLAB/Simulink, where the drivetrain (gearbox and generator) are modeled using a lumped‐parameter approach. Three extreme events are assessed: low‐voltage ride through, emergency stop and normal stop. The analysis is focused on finding which event has the most negative impact on the bearing extreme radial loads. The two latter events are carried out following the guidelines of the International Electrotechnical Commission standard 61400‐1. The former is carried out by applying a voltage fault while simulating the wind turbine under normal turbulent wind conditions. The voltage faults are defined by following the guidelines from four different grid codes in order to assess the impact on the bearings. The results show that the grid code specifications have a dominant role in the maximum loads achieved by the bearings during a low‐voltage ride through. Moreover, the emergency brake shows the highest impact by increasing the bearing loads up to three times the rated value. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
As more floating farms are being developed, the wake interaction between multiple floating wind turbines (FWTs) is becoming increasingly relevant. FWTs have long natural periods in certain degrees of freedom, and the large‐scale movement of the wake, known as wake meandering, occurs at very low frequencies. In this study, we use FAST.Farm to simulate a two‐turbine case with three different FWT concepts: a semisubmersible (semi), a spar, and a tension leg platform (TLP), separated by eight rotor diameters in the wind direction. Since wake meandering varies depending on the environmental conditions, three different wind speeds (for all three concepts) as well as two different turbulence levels (for the semi) are considered. For the below‐rated wind speed, when wake meandering was most extreme, yaw motion standard deviations for the downstream semi were approximately 40% greater in high turbulence and over 100% greater in low turbulence when compared with the upstream semi. The low yaw natural frequency (0.01 Hz) of the semi was excited by meandering, while quasi‐static responses resulted in approximately 20% increases in yaw motion standard deviations for the spar and TLP. Differences in fatigue loading between the upstream and downstream turbines for the mooring line tension and tower base fore‐aft bending moment mostly depended on the velocity deficit and were not directly affected by meandering. However, wake meandering did affect fatigue loading related to the tower top yaw moment and the blade root out‐of‐plane moment.  相似文献   

20.
主轴承力作用下的多缸内燃机机体结构动力响应分析   总被引:7,自引:0,他引:7  
以某 4缸柴油机为例 ,在建立机体实体模型及机体结构有限元模态分析的基础上 ,对多缸内燃机机体各部位在曲轴主轴承力作用下的结构动力响应进行了有限元分析 ,得到了内燃机机体裙部不同部位及各缸缸套不同部位的结构动力响应曲线。在此基础上 ,对机体各部位结构动力响应与机体结构模态特征、噪声辐射间的关系以及机体结构振动对缸套与活塞之间流体润滑性能的影响也进行了进一步的讨论 ,从而为多缸内燃机的设计提供了必要的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号