首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
The performance characteristics and the near wake of a model wind turbine were investigated experimentally. The model tested is a three‐bladed horizontal axis type wind turbine with an upstream rotor of 0.90 m diameter. The performance measurements were conducted at various yaw angles, a freestream speed of about 10 m s ?1, and the tip speed ratio was varied from 0.5 to 12. The time‐averaged streamwise velocity field in the near wake of the turbine was measured at different tip speed ratios and downstream locations. As expected, it was found that power and thrust coefficients decrease with increasing yaw angle. The power loss is about 3% when the yaw angle is less than 10° and increases to more than 30% when the yaw angle is greater than 30°. The velocity distribution in the near wake was found to be strongly influenced by the tip speed ratio and the yaw angle. At the optimum tip speed ratio, the axial velocity was almost uniform within the midsection of the rotor wake, whereas two strong peaks are observed for high tip speed ratios when the yaw angle is 0°. As the yaw angle increases, the wake width was found to be reduced and skewed towards the yawed direction. With increasing downstream distance, the wake velocity field was observed to depend on the tip speed ratio and more pronounced at high tip speed ratio. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Incident flows on wind turbines are often highly turbulent, because these devices operate in the atmospheric boundary layer and often in the wake of other wind turbines. This article presents experimental investigations of the effects of a high turbulence level on wind turbine aerodynamics. Power and thrust are measured on a horizontal axis wind turbine model in the ‘Lucien Malavard’ wind tunnel. A grid is used to generate three turbulence levels (4·4%, 9% and 12%) with integral length scale of the order of magnitude of the chord length. Experiments show little effect of turbulence on the wind turbine model power and thrust. This can be justified by analysis of the aerodynamic loads along the blade. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
This research investigates the flow behavior and its features in the blade's root region of a horizontal axis wind turbine by using stereoscopic particle image velocimetry (PIV) technique. Wind tunnel tests are conducted to measure the velocity field, phase‐locked with the blade motion, at different azimuth angles and at different spanwise positions. The pressure distribution is obtained from PIV velocity field by solving the Navier–Stokes momentum equations. In this paper, we aim to answer two questions: (i) How is the flow behavior in the root region? (ii) How is the evolution of the root vortex? The analysis of the velocity fields shows an outboard radial flow motion in the root region and a vorticity driven inboard motion at the blade?s maximum chord position. As a result of this vorticity driven flow, an increase in the axial velocity close to nacelle is measured. Wake sheets are observed and further discussed in the measured velocity and vorticity distributions. The formation and evolution of the root vortices conveyed downstream by the axial velocity are analyzed through vorticity and pressure distributions. Although the azimuthal vorticity in 3D representation is showing the trailing vorticity, the tilting of the root vortex tube is observed in the axial vorticity distribution. Moreover, the radial vorticity and azimuthal velocity from chordwise measurements show separation on the suction surface of the blade. This research concluded that the flow in the blade wake is driven by the root vortex; hence, the local effects of the root vortex cannot be ignored. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
风电机组载荷计算的外部风速条件模拟研究   总被引:1,自引:0,他引:1  
针对大型风力发电机组设计中的风速条件进行了模拟研究,利用Bladed软件进行了仿真和载荷计算,研究内容包括风切变、塔影、上风向尾流、三维湍流、瞬时风速等建模问题.结合沈阳工业大学承担"863"项目--SUT-1000 MW级变速恒频风电机组的研制,进行了IEC标准下各级负载级别的载荷计算.  相似文献   

6.
秦海岩 《风能》2013,16(1):1-17
新年过后的第二个周末,浓重的雾霾已在全国多个城市肆虐,这让人们的心情变得糟糕。数据显示,截至1月13日零时,全国有33个城市的部分监测点PM2.5浓度超过300微克/立方米,个别城市出现PM2.5"爆表",比如北京的PM2.5浓度最高达到950微克/立方米。环保专家称,如此严重的空气质量污染,可以说已近人类所能承受的极限。于是,人们看到了政府有关方面发布的紧急预案,比如通知市民减少户外活动,要求学校停止户外体育锻炼,这体现了政府的责任意识。但我们是满足于制定完美的灾情应对预案,还是谋求从根本上消除灾难?  相似文献   

7.
文章针对二维和三维垂直轴风力机的数值模拟的差异,提出了风力机的三维效应是造成模拟差异的主要原因。运用计算流体力学方法对某直线翼垂直轴风力机模型进行了二维和三维的数值模研究。通过比对实验得到的风力机功率系数,发现三维模拟结果与实验值吻合。观察尖速比为1.5时二维和三维垂直轴风力机的速度型分布曲线、流向速度云图和涡量云图,研究了阻塞效应、叶梢涡、支撑结构和塔架对数值模拟结果的影响。研究发现:在二维的数值模拟中,风力机没有受阻塞效应影响,功率系数被严重高估;三维的数值模拟能够模拟出全部的流畅细节,受叶梢涡和支撑结构的影响,风力机的功率系数明显降低。  相似文献   

8.
A small‐scale horizontal axis wind turbine capable of producing 100 W of rated power has been designed and tested using a low‐speed wind tunnel. Power output from the wind turbine was calculated through measurements of the electrical current from a 12 V DC generator. Annual energy extraction from this wind turbine shows that a number of potential applications are possible especially in the remote areas where extension of power grid is not feasible. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
An experimental study is conducted to investigate the flow dynamics within the near‐wake region of a horizontal axis wind turbine using particle image velocimetry (PIV). Measurements were performed in the horizontal plane in a row of four radially distributed measurement windows (tiles), which are then patched together to obtain larger measurement field. The mean and turbulent components of the flow field were measured at various blade phase angles. The mean velocity and turbulence characteristics show high dependency on the blade phase angle in the near‐wake region closer to the blade tip and become phase independent further downstream at a distance of about one rotor diameter. In the near‐wake region, both the mean and turbulent characteristics show a systemic variation with the phase angle in the blade tip region, where the highest levels of turbulence are observed. The streamlines of the instantaneous velocity field at a given phase allowed to track a tip vortex which showed wandering trend. The tip vortices are mostly formed at r/R > 1, which indicates the wake expansion. Results also show the gradual movement of the vortex region in the axial direction, which can be attributed to the dynamics of the helical tip vortices which after being generated from the tip, rotate with respect to the blade and move in the axial direction because of the axial momentum of the flow. The axial velocity deficit was compared with other laboratory and field measurements. The comparison shows qualitative similarity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The velocity field in the wake of a two‐bladed wind turbine model (diameter 180 mm) has been studied under different conditions using a two‐component hot wire. All three velocity components were measured both for the turbine rotor normal to the oncoming flow as well as with the turbine inclined to the freestream direction (the yaw angle was varied from 0° to 20°). The measurements showed, as expected, a wake rotation in the opposite direction to that of the turbine. A yawed turbine is found to clearly deflect the wake flow to the side, showing the potential of controlling the wake by yawing the turbine. An unexpected feature of the flow was that spectra from the time signals showed the appearance of a low‐frequency fluctuation both in the wake and in the flow outside the wake. This fluctuation was found both with and without freestream turbulence and also with a yawed turbine. The frequency expressed as a Strouhal number was shown to be independent of the freestream velocity or turbulence level, but the low frequency was only observed when the tip speed ratio (or equivalently the drag coefficient) was high. The shedding frequency changed also with the yaw angle. This is in agreement with the idea that the turbine sheds structures as a bluff body. The phenomenon, noticeable in all the velocity components, was further investigated using two‐point cross‐correlations of the velocity signals. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The blade element momentum (BEM) method is widely used for calculating the quasi‐steady aerodynamics of horizontal axis wind turbines. Recently, the BEM method has been expanded to include corrections for wake expansion and the pressure due to wake rotation (), and more accurate solutions can now be obtained in the blade root and tip sections. It is expected that this will lead to small changes in optimum blade designs. In this work, has been implemented, and the spanwise load distribution has been optimized to find the highest possible power production. For comparison, optimizations have been carried out using BEM as well. Validation of shows good agreement with the flow calculated using an advanced actuator disk method. The maximum power was found at a tip speed ratio of 7 using , and this is lower than the optimum tip speed ratio of 8 found for BEM. The difference is primarily caused by the positive effect of wake rotation, which locally causes the efficiency to exceed the Betz limit. Wake expansion has a negative effect, which is most important at high tip speed ratios. It was further found that by using , it is possible to obtain a 5% reduction in flap bending moment when compared with BEM. In short, allows fast aerodynamic calculations and optimizations with a much higher degree of accuracy than the traditional BEM model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A study on stall-delay for horizontal axis wind turbine   总被引:1,自引:0,他引:1  
The study on the stall-delay phenomenon for horizontal axis wind turbine (HAWT) was carried out by employing the boundary layer analysis, the numerical simulation and the experimental measurement. The effects of rotation on blade boundary layers are investigated by solving the 3D integral boundary layer equations with assumed velocity profiles. It is shown that rotation has a generally beneficial effect in delaying separation compared with that under 2D stationary condition. Next, the detailed flow fields are simulated on the conditions of 2D stationary and 3D rotation by CFD code. The computation results show that rotation affects the pressure distribution on the surface of the foil, which can give rise to 3D stall-delay in stalled condition HAWT. Finally, the flow fields behind a model HAWT are measured with a hot-wire probe in the wind tunnel. The results show good agreement with those from 3D computation calculations, suggesting that the stall-delay should be taken into consideration, in order to accurately predict the loading and performance of a HAWT operating in stall.  相似文献   

13.
Nobuo Namura 《风能》2020,23(2):327-339
A wind shear estimation method based on fore‐aft moment is proposed to estimate wind shear strength without a Doppler lidar. We construct wind shear estimation models (WSEMs) using surrogate models whose input is the time‐averaged fore‐aft moment and various supervisory control and data acquisition (SCADA) system data. Learning data for the WSEMs are generated by numerical simulation or field measurement of a real turbine using SCADA, strain gauges, and Doppler lidar. By using simulation data, we construct 20 WSEMs with various input combinations and surrogate methods to select a model with the highest accuracy. The best WSEM is constructed with the universal Kriging surrogate model and uses the fore‐aft moment and wind speed as its input. Subsequently, the best WSEM is applied to a real turbine to validate its accuracy in real wind conditions, and we confirm that the WSEM has reasonable accuracy. However, the estimation error in the real wind condition is about twice as high as that in the simulation due to the real wind shear not completely corresponding to the assumed wind profile and a large yaw error. Further improvement in wind shear estimation accuracy will be achieved by adding yaw error and turbulence intensity to the input variables and applying the WSEM to wind farms on simple terrain or offshore wind farms where wind profile error decreases.  相似文献   

14.
The flow in the meridian plane of a high aspect ratio vertical‐axis wind turbine (VAWT) can be described as two dimensional. The wake that is generated by the VAWT in a two‐dimensional flow consists of shed vorticity and is a result of the temporal variation of bound circulation on the blades, following Kelvin's theorem. The strength and location of the vorticity that is produced by the VAWT in a two‐dimensional flow are thus independent of the average bound circulation on the blade. Two independent computational models—a potential flow panel model and a method that is based on the vorticity–velocity formulation of the Navier–Stokes equations—have been used to show that the VAWT can produce the same power for different azimuthal distributions of the blade aerodynamic loading. It is thus demonstrated that the instantaneous blade aerodynamic loading and the power conversion of a VAWT are decoupled. This observation has, potentially, significant impact on the design of the VAWT and reopens the research on asymmetric blade shapes in order to optimize the performance of this turbine configuration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Curved tip extensions are among the rotor innovation concepts that can contribute to the higher performance and lower cost of horizontal axis wind turbines. One of the key drivers to exploit their advantages is the use of accurate and efficient computational aerodynamic models during the design stage. The present work gives an overview of the performance of different state-of-the-art models. The following tools were employed, in descending order of complexity: (i) a blade-resolved Navier Stokes solver, (ii) a lifting line model, (iii) a vortex-based method coupling a near-wake model with a far-wake model, and (iv) two implementations of the widely used blade element momentum method (BEM), with and without radial induction. The predictions of the codes were compared when simulating the baseline geometry of a reference wind turbine and different tip extension designs with relatively large sweep angle and/or dihedral angle. Four load cases were selected for this comparison, to cover several aspects of the aerodynamic modeling: steady power curve, pitch step, extreme operating gust impact, and standstill in deep stall. The present study highlighted the limitations of the BEM-based formulations to capture the trends attributed to the introduction of curvature at the tip. This was true even when using the radial induction submodel. The rest of the computational methods showed relatively good agreement in most of the studied load cases. An exception to this was the standstill configuration, as the blade-resolved Navier-Stokes solver was the only code able to capture the highly unsteady effects of deep stall.  相似文献   

16.
17.
The development of the near wake of a vertical axis wind turbine is investigated by stereoscopic particle image velocimetry. The experiments are conducted in an open-jet wind tunnel on an H-shaped rotor, operated at a tip speed ratio of 4.5 and at an average chord-based Reynolds number of 1.7 × 105. Phase-locked measurements are acquired at the turbine mid span in order to study the horizontal wake dynamics at the symmetry plane. Results show the evolution of the vorticity shed by the blade, how it organizes in large scale vortical structures at the edges of the wake and the resulting asymmetric induction field in the wake. The evolution of the blade tip vortices and the 3D wake geometry are detailed by a second set of measurements acquired at several vertical planes aligned with the free stream. The dynamics of the system of tip vortices, their vertical motion and interactions are discussed and related to the geometry and the recovery of the wind turbine wake. The experimental data are made publicly available for research purposes.  相似文献   

18.
Joshua Lyle Dowler  Sven Schmitz 《风能》2015,18(10):1793-1813
This work proposes a new solution‐based stall delay model to predict rotational effects on horizontal‐axis wind turbines. In contrast to conventional stall delay models that correct sectional airfoil data prior to the solution to account for three‐dimensional and rotational effects, a novel approach is proposed that corrects sectional airfoil data during a blade element momentum solution algorithm by investigating solution‐dependent parameters such as the spanwise circulation distribution and the local flow velocity acting at a section of blade. An iterative process is employed that successively modifies sectional lift and drag data until the blade circulation distribution is converged. Results obtained with the solution‐based stall delay model show consistent good agreement with measured data along the National Renewable Energy Laboratory Phase VI and Model Experiments in Controlled Conditions rotor blades at low and high wind speeds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a wind tunnel experiment for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed vertical axis wind turbine (VAWT) depending on several values of tip speed ratio. In the present study, the wind turbine is a four-bladed VAWT. The test airfoil of blade is symmetry airfoil (NACA0021) with 32 pressure ports used for the pressure measurements on blade surface. Based on the pressure distributions which are acted on the surface of rotor blade measured during rotation by multiport pressure-scanner mounted on a hub, the power, tangential force, lift and drag coefficients which are obtained by pressure distribution are discussed as a function of azimuthally position. And then, the loads which are applied to the entire wind turbine are compared with the experiment data of pressure distribution. As a result, it is clarified that aerodynamic forces take maximum value when the blade is moving to upstream side, and become small and smooth at downstream side. The power and torque coefficients which are based on the pressure distribution are larger than that by torque meter.  相似文献   

20.
The implementation of wind energy conversion systems in the built environment has renewed the interest and the research on Vertical Axis Wind Turbines (VAWTs). The VAWT has an inherent unsteady aerodynamic behavior due to the variation of angle of attack and perceived velocity with azimuth angle. The phenomenon of dynamic stall is then an intrinsic effect of the operation at low tip speed ratios, impacting both loads and power. The complexity of the problem and the need for new design approaches for VAWTs for the built environment have driven the authors to focus this research on the CFD modeling of VAWTs on:
  • Comparing the results between commonly used turbulence models: Unsteady Reynolds Averaged Navier‐Stokes – URANS (Spalart‐Allmaras and k‐?) and large eddy models (Large Eddy Simulation and Detached Eddy Simulation).
  • Verifying the sensitivity of the model to its grid refinement (space and time).
  • Evaluating the suitability of using Particle Image Velocimetry (PIV) experimental data for model validation.
The current work investigates the impact of accurately modeling the separated shed wake resulting from dynamic stall, and the importance of validation of the flow field rather than validation with only load data. The structure and magnitude of the wake are validated with PIV results, and it demonstrated that the accuracy of the different models in simulating a correct wake structure has a large impact in loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号