共查询到20条相似文献,搜索用时 0 毫秒
1.
Model wind turbine arrays were developed for the purpose of investigating the wake interaction and turbine canopy layer in a standard cartesian and row‐offset turbine array configurations. Stereographic particle image velocimetry was used to collect flow data upstream and downstream of entrance and exit row turbines in each configuration. Wakes for all cases were analyzed for energy content and recovery behavior including entrainment of high‐momentum flow from above the turbine canopy layer. The row‐offset arrangement of turbines within an array grants an increase in streamwise spacing of devices and allows for greater wake remediation between successive rows. These effects are seen in exit row turbine wakes as changes to statistical quantities including the in‐plane Reynolds stress, , and the production of turbulence. The recovery of wakes also strongly mitigates the perceived underperformance of wind turbines within an array. The flux of kinetic energy is demonstrated to be more localized in the entrance rows and in the offset arrangement. Extreme values for the flux of kinetic energy are about 7.5% less in the exit row of the cartesian arrangement than in the offset arrangement. Measurements of mechanical torque at entrance and exit row turbines lead to curves of power coefficient and demonstrate an increase in efficiency in row‐offset configurations. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
2.
M. Sanchez Gomez;D. Muñoz-Esparza;J. A. Sauer; 《风能》2024,27(11):1353-1368
Fast and accurate large-eddy simulation (LES) of the atmospheric boundary layer plays a crucial role in advancing wind energy research. Long-duration wind farm studies at turbine-resolving scales have become increasingly important to understand the intricate interactions between large wind farms and the atmospheric boundary layer. However, the prohibitive computational cost of these turbulence- and turbine-resolving simulations has precluded such modeling to be exercised on a regular basis. To that end, we implement and validate the generalized actuator disk (GAD) model in the computationally efficient, graphics processing unit (GPU)–resident, LES model FastEddy. We perform single-turbine simulations under three atmospheric stabilities (neutral, unstable, and stable) and compare them against observations from the Scaled Wind Farm Technology (SWiFT) facility and other LES codes from the recent Wakebench turbine wake model benchmark. Our idealized LES results agree well with observed wake velocity deficit and downstream recovery across stability regimes. Turbine response in terms of rotational speed, generated power, torque, and thrust coefficient are well predicted across stability regimes and are consistent with the LES results from the benchmark. The FastEddy simulations are found to be at least two orders of magnitude more efficient than the traditional CPU-based LES models, opening the door for realistic LES simulations of full wind plants as a viable standard practice. 相似文献
3.
Stochastic simulation of turbulent inflow fields commonly used in wind turbine load computations is unable to account for contrasting states of atmospheric stability. Flow fields in the stable boundary layer, for instance, have characteristics such as enhanced wind speed and directional shear; these effects can influence loads on utility‐scale wind turbines. To investigate these influences, we use large‐eddy simulation (LES) to generate an extensive database of high‐resolution ( ~ 10 m), four‐dimensional turbulent flow fields. Key atmospheric conditions (e.g., geostrophic wind) and surface conditions (e.g., aerodynamic roughness length) are systematically varied to generate a diverse range of physically realizable atmospheric stabilities. We show that turbine‐scale variables (e.g., hub height wind speed, standard deviation of the longitudinal wind speed, wind speed shear, wind directional shear and Richardson number) are strongly interrelated. Thus, we strongly advocate that these variables should not be prescribed as independent degrees of freedom in any synthetic turbulent inflow generator but rather that any turbulence generation procedure should be able to bring about realistic sets of such physically realizable sets of turbine‐scale flow variables. We demonstrate the utility of our LES‐generated database in estimation of loads on a 5‐MW wind turbine model. More importantly, we identify specific turbine‐scale flow variables that are responsible for large turbine loads—e.g., wind speed shear is found to have a greater influence on out‐of‐plane blade bending moments for the turbine studied compared with its influence on other loads such as the tower‐top yaw moment and the fore‐aft tower base moment. Overall, our study suggests that LES may be effectively used to model inflow fields, to study characteristics of flow fields under various atmospheric stability conditions and to assess turbine loads for conditions that are not typically examined in design standards. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
4.
The effects of spatial and temporal resolution of wind inflows generated using large eddy simulations (LES) on the scales of turbulence present in the wind inflow, and the resulting changes in wind turbine performance were investigated for neutral atmospheric boundary layer conditions. Wind inflows with four different spatial resolutions and five different temporal resolutions were used to produce different turbine responses. An aero‐elastic code assessed the dynamic response of two wind turbines to the different inflows. Auto‐spectral density functions (ASDF) of turbine responses, such as blade deflection and bending moment, that are representative of the turbine response were used to assess the effect of the inflow. The results indicated that, as additional turbulence scales were resolved, the wind turbines showed a similar increased response that was evident in both the ASDF and variance of the different wind turbine performance parameters. As a result, the amount to which turbulence is resolved in the inflow, particularly using tools such as LES, will be important to consider when using these inflows for wind turbine design and performance prediction. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
5.
A wind tunnel experiment has been performed to quantify the Reynolds number dependence of turbulence statistics in the wake of a model wind turbine. A wind turbine was placed in a boundary layer flow developed over a smooth surface under thermally neutral conditions. Experiments considered Reynolds numbers on the basis of the turbine rotor diameter and the velocity at hub height, ranging from Re = 1.66 × 104 to 1.73 × 105. Results suggest that main flow statistics (mean velocity, turbulence intensity, kinematic shear stress and velocity skewness) become independent of Reynolds number starting from Re ≈ 9.3 × 104. In general, stronger Reynolds number dependence was observed in the near wake region where the flow is strongly affected by the aerodynamics of the wind turbine blades. In contrast, in the far wake region, where the boundary layer flow starts to modulate the dynamics of the wake, main statistics showed weak Reynolds dependence. These results will allow us to extrapolate wind tunnel and computational fluid dynamic simulations, which often are conducted at lower Reynolds numbers, to full‐scale conditions. In particular, these findings motivates us to improve existing parameterizations for wind turbine wakes (e.g. velocity deficit, wake expansion, turbulence intensity) under neutral conditions and the predictive capabilities of atmospheric large eddy simulation models. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
6.
In recent years, there has been a growing interest by the wind energy community to assess the impact of atmospheric stability on wind turbine performance; however, up to now, typically, stability is considered in several distinct arbitrary stability classes. As a consequence, each stability class considered still covers a wide range of conditions. In this paper, wind turbine fatigue loads are studied as a function of atmospheric stability without a classification system, and instead, atmospheric conditions are described by a continuous joint probability distribution of wind speed and stability. Simulated fatigue loads based upon this joint probability distribution have been compared with two distinct different cases, one in which seven stability classes are adopted and one neglecting atmospheric stability by following International Electrotechnical Commission (IEC) standards. It is found that for the offshore site considered in this study, fatigue loads of the blade root, rotor and tower loads significantly increase if one follows the IEC standards (by up to 28% for the tower loads) and decrease if one considers several stability classes (by up to 13% for the tower loads). The substantial decrease found for the specific stability classes can be limited by considering one stability class that coincides with the mean stability of a given hub height wind speed. The difference in simulated fatigue loads by adopting distinct stability classes is primarily caused by neglecting strong unstable conditions for which relatively high fatigue loads occur. Combined, it is found that one has to carefully consider all stability conditions in wind turbine fatigue load simulations. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
7.
Leonardo P. Chamorro S‐J. Lee D. Olsen C. Milliren J. Marr R.E.A Arndt F. Sotiropoulos 《风能》2015,18(2):339-349
8.
Nocturnal low‐level jet (LLJ) events are commonly observed over the Great Plains region of the USA, thus making this region more favorable for wind energy production. At the same time, the presence of LLJs can significantly modify vertical shear and nocturnal turbulence in the vicinities of wind turbine hub height, and therefore has detrimental effects on turbine rotors. Accurate numerical modeling and forecasting of LLJs are thus needed for precise assessment of wind resources, reliable prediction of power generation and robust design of wind turbines. However, mesoscale numerical weather prediction models face a challenge in precisely forecasting the development, magnitude and location of LLJs. This is due to the fact that LLJs are common in nocturnal stable boundary layers, and there is a general consensus in the literature that our contemporary understanding and modeling capability of this boundary‐layer regime is quite poor. In this paper, we investigate the potential of the Weather Research and Forecasting (WRF) model in forecasting LLJ events over West Texas and southern Kansas. Detailed observational data from both cases were used to assess the performance of the WRF model with different model configurations. Our results indicate that the WRF model can capture some of the essential characteristics of observed LLJs, and thus offers the prospect of improving the accuracy of wind resource estimates and short‐term wind energy forecasts. However, the core of the LLJ tended to be higher as well as slower than what was observed, leaving room for improvement in model performance. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
9.
Severe winds from thunderstorm outflows pose a challenge to wind turbine arrays. They can cause significant power ramps and disruption in energy production. They can also cause extreme structural damage to turbines as was seen in the severe storm event over the Buffalo Ridge Wind Farm on July 1, 2011. At this southwestern Minnesota site, blades from multiple turbines broke away and a tower buckled in the intense winds. In this study, we attempt to characterize meteorological conditions over the Buffalo Ridge Wind Farm area during this event. The observational network included NEXRAD radars, automated surface observation stations and a wind profiler. Storm reports from the Storm Prediction Center and damage surveys provided additional insight to the in situ measurements. Even with these datasets, assessing wind speeds around turbine rotors is difficult. Thus, Weather Research and Forecasting model simulations of the event are carried out that consider current and anticipated future operational model setups. This work addresses model spatial resolution versus parameterization complexity. Parameterizations of the planetary boundary layer and microphysics processes are evaluated based on their impact on storm dynamics and the low‐level wind field. Results are also compared with the Wind Integration National Dataset, which utilizes data assimilation and an extensive continental domain. Enhanced horizontal resolution with simplistic parameterization helps increase resolved wind speeds and ramp intensity. Enhanced sophistication of microphysics parameterizations also helps increase resolved wind speeds, improve storm timing and structure and resolve higher values of turbulent kinetic energy in the lowest 1 km of the atmosphere. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
10.
The late afternoon hours in the diurnal cycle precede the development of the nocturnal stable boundary layer. This “evening transition” (ET) period is often when energy demand peaks. This period also corresponds to the time of day that is a precursor to late‐afternoon downbursts, a subject of separate interest. To capture physical characteristics of wind fields in the atmospheric boundary layer (ABL) during this ET period, particularly the interplay of shear and turbulence, stochastic simulation approaches, although more tractable, are not suitable. Large‐eddy simulation (LES), on the other hand, may be used to generate high‐resolution ABL turbulent flow fields. We present a suite of idealized LES four‐dimensional flow fields that define a database representing different combinations of large‐scale atmospheric conditions (characterized by associated geostrophic winds) and surface boundary conditions (characterized by surface heat fluxes). Our objective is to evaluate the performance of wind turbines during the ET period. Accordingly, we conduct a statistical analysis of turbine‐scale wind field variables. We then employ the database of these LES‐based inflow wind fields in aeroelastic simulations of a 5‐MW wind turbine. We discuss how turbine loads change as the ET period evolves. We also discuss maximum and fatigue loads on the rotor and tower resulting from different ABL conditions. Results of this study suggest that, during the ET period, the prevailing geostrophic wind speed affects the mean and variance of longitudinal winds greatly and thus has significant influence on all loads except the yaw moment which is less sensitive to uniform and symmetric incoming flow. On the other hand, surface heat flux levels affect vertical turbulence and wind shear more and, as a result, only affect maximum blade flapwise bending and tower fore‐aft bending loads. 相似文献
11.
The potential benefits associated with harnessing available momentum and reducing turbulence levels in a wind farm composed of wind turbines of alternating size are investigated through wind tunnel experiments. A variable size turbine array composed of 3 by 8 model wind turbines is placed in a boundary layer flow developed over both a smooth and rough surfaces under neutrally stratified thermal conditions. Cross‐wire anemometry is used to capture high resolution and simultaneous measurements of the streamwise and vertical velocity components at various locations along the central plane of the wind farm. A laser tachometer is employed to obtain the instantaneous angular velocity of various turbines. The results suggest that wind turbine size heterogeneity in a wind farm introduces distinctive flow interactions not possible in its homogeneous counterpart. In particular, reduced levels of turbulence around the wind turbine rotors may have positive effects on turbulent loading. The turbines also appear to perform quite uniformly along the entire wind farm, whereas surface roughness impacts the velocity recovery and the spectral content of the turbulent flow within the wind farm. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
12.
As the average hub height and blade diameter of new wind turbine installations continue to increase, turbines typically encounter higher wind speeds, which enable them to extract large amounts of energy, but they also face challenges due to the complex nature of wind flow and turbulence in the planetary boundary layer (PBL). Wind speed and turbulence can vary greatly across a turbine's rotor disk; this variability is partially due to whether the PBL is stable, neutral or convective. To assess the influence of stability on these wind characteristics, we utilize a unique data set including observations from two meteorological towers, a surface flux tower and high‐resolution remote‐sensing sound detection and ranging (SODAR) instrument. We compare several approaches to defining atmospheric stability to the Obukhov length (L). Typical wind farm observations only allow for the calculation of a wind shear exponent (α) or horizontal turbulence intensity (IU) from cup anemometers, whereas SODAR gives measurements at multiple heights in the rotor disk of turbulence intensity (I) in the latitudinal (Iu), longitudinal (Iv) and vertical (Iw) directions and turbulence kinetic energy (TKE). Two methods for calculating horizontal Ifrom SODAR data are discussed. SODAR stability parameters are in high agreement with the more physically robust L,with TKE exhibiting the best agreement, and show promise for accurate characterizations of stability. Vertical profiles of wind speed and turbulence, which likely affect turbine power performance, are highly correlated with stability regime. At this wind farm, disregarding stability leads to over‐assessments of the wind resource during convective conditions and under‐assessments during stable conditions. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
13.
Onshore wind turbine technology is moving offshore, and the offshore wind industry tends to use larger turbines than those used over land. This calls for an improved understanding of the marine boundary layer. The standards used in the design of offshore wind turbines, particularly the rotor–nacelle assembly, are similar to those used for onshore wind turbines. As a result, simplifications regarding the marine boundary layer are made. Atmospheric stability considerations and wave effects, including the dynamic sea surface roughness, are two major factors affecting flow over sea versus land. Neutral stratification and a flat, smooth sea surface are routinely used as assumptions in wind energy calculations. Newly published literature in the field reveals that the assumption of a neutral stratification is not necessarily a conservative approach. Design tests based on neutral stratification give the lowest fatigue damage on the rotors. Turbulence, heat exchange and momentum transfer depend on the sea state, but this is usually ignored, and the sea surface is thought of as level and smooth. Field experiments and numerical simulations show that during swell conditions, the wind profile will no longer exhibit a logarithmic shape, and the surface drag relies on the sea state. Stratification and sea state are parameters that can be accounted for, and they should therefore be considered in design calculations, energy assessments and power output predictions. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
14.
A horizontal axis wind turbine model was tested in a closed‐circuit wind tunnel under various inflow conditions. Separate experiments placed the test turbine (i) in the wake of a three‐dimensional, sinusoidal hill, (ii) in the wake of another turbine and (iii) in the turbulent boundary layer, as a reference case. Simultaneous high‐frequency measurements of the turbine output voltage, rotor angular velocity along with streamwise and wall normal velocity components were collected at various locations through the turbine's miniature direct‐current (DC) generator, a high‐resolution laser tachometer and cross‐wire anemometer, respectively. Validation trials were conducted first in order to characterize the test turbine's output and response to the baseline turbulent boundary layer. Analysis was performed by comparing the cross‐wire anemometry measurements of the incoming flow with the turbine voltage output to investigate the unsteady rotor kinematics under different flow perturbations. Using spectral, auto‐correlation and cross‐correlation methods, it was found that the flow structures developing downwind of the hill leave a stronger signature on the fluctuations and spectrum of the rotor angular velocity, as compared with those flow structures filtered or deflected by placing a turbine upwind. In summary, we show that the effects on downwind turbines of complex terrain and multi‐turbine arrangements are consistent with the induced modifications by the hill or turbine on the large scale structures in the incoming flow. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
15.
Justin E. Stopa;Doug Vandemark;Ralph Foster;Marc Emond;Alexis Mouche;Bertrand Chapron; 《风能》2024,27(11):1340-1352
Measuring boundary layer stratification, wind shear, and turbulence remains challenging for wind resource assessment. In particular, larger eddy scales have the greatest impact on turbine load fluctuations, and there are few in situ methods to observe them adequately. Satellite remote sensing using synthetic aperture radar (SAR) is an alternative approach. In this study, eddy-related signatures in 704 high-resolution images are related to stratification through a bulk Richardson number (Ri$$ Ri $$) measured by a buoy near Martha's Vineyard, the US epicenter of offshore wind. Variations in SAR-observed atmospheric boundary layer eddies, or lack of them, correspond to specific Ri$$ Ri $$ regimes. Accounting for strong vertical wind shear, typically under stable stratification, is critical for energy production and turbine loads, and SAR directly identifies these conditions by the absence of energetic eddies. SAR also provides a regional climatology of atmospheric stratification for offshore wind assessment, complementing other observations, and with potential application worldwide. 相似文献
16.
An active grid is used to generate a variety of turbulent shear profiles in a wind tunnel. The vertical bars are set to flap through varying angles across the test section producing a variation in the perceived solidity, resulting in a mean shear. The horizontal bars are used in a fully random operational mode to set the background turbulence level. It is demonstrated that mean velocity profiles with approximately the same shear can be produced with different turbulence intensities and local turbulent Reynolds numbers based on the Taylor microscale, λ. Conversely, it is also demonstrated that flows can be produced with similar turbulence intensity profiles but different mean shear. It is confirmed that the length scales and dynamics, the latter being assessed through the velocity spectra and probability density functions, do not vary significantly across the investigation domain. Such flows are of particular relevance for studies investigating the effect of in‐flow conditions on obstacles where these studies wish to decouple the effects of turbulence intensity and mean shear, a feat previously unattainable in experimental facilities. Given that the power output of wind turbines is known to be a function of both mean shear and turbulence intensity, the experimental methodology presented herein is invaluable to the wind turbine model testing community who, at present, cannot exert such control authority over the in‐flow conditions. 相似文献
17.
Ashesh Sharma Michael J. Brazell Ganesh Vijayakumar Shreyas Ananthan Lawrence Cheung Nathaniel deVelder Marc T. Henry de Frahan Neil Matula Paul Mullowney Jon Rood Philip Sakievich Ann Almgren Paul S. Crozier Michael Sprague 《风能》2024,27(3):225-257
Predictive high-fidelity modeling of wind turbines with computational fluid dynamics, wherein turbine geometry is resolved in an atmospheric boundary layer, is important to understanding complex flow accounting for design strategies and operational phenomena such as blade erosion, pitch-control, stall/vortex-induced vibrations, and aftermarket add-ons. The biggest challenge with high-fidelity modeling is the realization of numerical algorithms that can capture the relevant physics in detail through effective use of high-performance computing. For modern supercomputers, that means relying on GPUs for acceleration. In this paper, we present ExaWind, a GPU-enabled open-source incompressible-flow hybrid-computational fluid dynamics framework, comprising the near-body unstructured grid solver Nalu-Wind, and the off-body block-structured-grid solver AMR-Wind, which are coupled using the Topology Independent Overset Grid Assembler. Turbine simulations employ either a pure Reynolds-averaged Navier–Stokes turbulence model or hybrid turbulence modeling wherein Reynolds-averaged Navier–Stokes is used for near-body flow and large eddy simulation is used for off-body flow. Being two-way coupled through overset grids, the two solvers enable simulation of flows across a huge range of length scales, for example, 10 orders of magnitude going from O(μm) boundary layers along the blades to O(10 km) across a wind farm. In this paper, we describe the numerical algorithms for geometry-resolved turbine simulations in atmospheric boundary layers using ExaWind. We present verification studies using canonical flow problems. Validation studies are presented using megawatt-scale turbines established in literature. Additionally presented are demonstration simulations of a small wind farm under atmospheric inflow with different stability states. 相似文献
18.
Simulations of wind turbine loads for the NREL 5 MW reference wind turbine under diabatic conditions are performed. The diabatic conditions are incorporated in the input wind field in the form of wind profile and turbulence. The simulations are carried out for mean wind speeds between 3 and 16 m s ? 1 at the turbine hub height. The loads are quantified as the cumulative sum of the damage equivalent load for different wind speeds that are weighted according to the wind speed and stability distribution. Four sites with a different wind speed and stability distribution are used for comparison. The turbulence and wind profile from only one site is used in the load calculations, which are then weighted according to wind speed and stability distributions at different sites. It is observed that atmospheric stability influences the tower and rotor loads. The difference in the calculated tower loads using diabatic wind conditions and those obtained assuming neutral conditions only is up to 17%, whereas the difference for the rotor loads is up to 13%. The blade loads are hardly influenced by atmospheric stability, where the difference between the calculated loads using diabatic and neutral input wind conditions is up to 3% only. The wind profiles and turbulence under diabatic conditions have contrasting influences on the loads; for example, under stable conditions, loads induced by the wind profile are larger because of increased wind shear, whereas those induced by turbulence are lower because of less turbulent energy. The tower base loads are mainly influenced by diabatic turbulence, whereas the rotor loads are influenced by diabatic wind profiles. The blade loads are influenced by both, diabatic wind profile and turbulence, that leads to nullifying the contrasting influences on the loads. The importance of using a detailed boundary‐layer wind profile model is also demonstrated. The difference in the calculated blade and rotor loads is up to 6% and 8%, respectively, when only the surface‐layer wind profile model is used in comparison with those obtained using a boundary‐layer wind profile model. Finally, a comparison of the calculated loads obtained using site‐specific and International Electrotechnical Commission (IEC) wind conditions is carried out. It is observed that the IEC loads are up to 96% larger than those obtained using site‐specific wind conditions.Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
19.
Correct turbulence intensity modeling is crucial for fatigue load estimation for wind turbine structural design. It is well known that the International Electrotechnical Commission 61400‐3 Normal Turbulence Model recommended for offshore wind turbine design is not representative of offshore wind conditions. A new model is urgently needed as offshore wind energy is rapidly developing worldwide. After evaluating the suitability of the Normal Turbulence Model at three sites in Asia, Europe and the USA, it is found that wind–wave interaction and stability correction should be taken into account in modeling the offshore turbulence intensity and wind speed relationship. Therefore, a new turbulence intensity model, which models wind–wave interaction with the Charnock equation and adjusts for the influence of atmospheric stability through empirical turbulence scaling functions for the unstable atmospheric boundary layer, was developed. The new model is physically based and is tested against observations from the three sites. It shows better performance than the Normal Turbulence Model and hence is recommended to replace the Normal Turbulence Model. For model application, only two parameters are required, which are defined herein to represent offshore sites with high, medium and low turbulence intensities. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
20.