首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to establish the impact of caloric restriction on high fat diet‐induced alterations on regulators of skeletal muscle growth. We hypothesized that caloric restriction would reverse the negative effects of high fat diet‐induced obesity on REDD1 and mTOR‐related signaling. Following an initial 8 week period of HF diet‐induced obesity, caloric restriction (CR ~30 %) was employed while mice continued to consume either a low (LF) or high fat (HF) diet for 8 weeks. Western analysis of skeletal muscle showed that CR reduced (p < 0.05) the obesity‐related effects on the lipogenic protein, SREBP1. Likewise, CR reduced (p < 0.05) the obesity‐related effects on the hyperactivation of mTORC1 and ERK1/2 signaling to levels comparable to the LF mice. CR also reduced (p < 0.05) obesity‐induced expression of negative regulators of growth, REDD1 and cleaved caspase 3. These findings have implications for on the reversibility of dysregulated growth signaling in obese skeletal muscle, using short‐term caloric restriction.  相似文献   

2.
Fatty acids are a major fuel for many tissues, and abnormal utilization is implicated in diseases. However, tissue fatty acid oxidation has not been determined reliably in vivo. Furthermore, fatty acid oxidation has not been partitioned into intracellular and extracellular components. In this report, a one‐pool model is described that enables direct quantitation of fluxes of intracellular and plasma fatty acids to mitochondria in skeletal muscle using dual stable isotopes and liquid chromatography/electrospray ionization ion‐trap tandem mass spectrometry technology. It is validated by the determination of palmitate oxidation by skeletal muscle in lean and obese rats and the regulation by insulin. Resting postabsorptive intramyocellular and plasma palmitate oxidation by the gastrocnemius muscle was determined to be 3.47 ± 0.8 and 2.06 ± 0.5 nmol/g/min in lean and 6.96 ± 1.8 and 1.34 ± 0.2 nmol/g/min in obese rats, respectively. In obese rats, hyperinsulinemia (1 nmol/L) suppressed intramyocellular (by 59 ± 5% to 2.88 ± 0.3 nmol/g/min; p <0.05) but not plasma (1.41 ± 0.14 nmol/g/min; p >0.05) palmitate oxidation. The fractional turnover rate of palmitoylcarnitine (0.34 ± 0.1/min vs. 0.83 ± 0.2/min; p <0.05) was also suppressed by insulin in obese rats. In obese and lean rats, 83 and 51%, respectively (p = 0.08), of plasma fatty acids traverse the triacylglycerol pool before being oxidized. The results demonstrated that the methodology is feasible and sensitive to metabolic alterations and thus can be used to study fatty acid utilization at tissue level in vivo in a compartmentalized manner for the first time.  相似文献   

3.
Macrophage apoptosis, a key process in atherogenesis, is regulated by oxidation products, including hydroxyoctadecadienoic acids (HODEs). These stable oxidation products of linoleic acid (LA) are abundant in atherosclerotic plaque and activate PPARγ and GPR132. We investigated the mechanisms through which HODEs regulate apoptosis. The effect of HODEs on THP‐1 monocytes and adherent THP‐1 cells were compared with other C18 fatty acids, LA and α‐linolenic acid (ALA). The number of cells was reduced within 24 hours following treatment with 9‐HODE (p < 0.01, 30 μM) and 13 HODE (p < 0.01, 30 μM), and the equivalent cell viability was also decreased (p < 0.001). Both 9‐HODE and 13‐HODE (but not LA or ALA) markedly increased caspase‐3/7 activity (p < 0.001) in both monocytes and adherent THP‐1 cells, with 9‐HODE the more potent. In addition, 9‐HODE and 13‐HODE both increased Annexin‐V labelling of cells (p < 0.001). There was no effect of LA, ALA, or the PPARγ agonist rosiglitazone (1μM), but the effect of HODEs was replicated with apoptosis‐inducer camptothecin (10μM). Only 9‐HODE increased DNA fragmentation. The pro‐apoptotic effect of HODEs was blocked by the caspase inhibitor DEVD‐CHO. The PPARγ antagonist T0070907 further increased apoptosis, suggestive of the PPARγ‐regulated apoptotic effects induced by 9‐HODE. The use of siRNA for GPR132 showed no evidence that the effect of HODEs was mediated through this receptor. 9‐HODE and 13‐HODE are potent—and specific—regulators of apoptosis in THP‐1 cells. Their action is PPARγ‐dependent and independent of GPR132. Further studies to identify the signalling pathways through which HODEs increase apoptosis in macrophages may reveal novel therapeutic targets for atherosclerosis.  相似文献   

4.
We hypothesized that consumption of saturated fatty acids in the form of high‐fat ground beef for 5 weeks would depress liver X receptor signaling targets in peripheral blood mononuclear cells (PBMC) and that changes in gene expression would be associated with the corresponding changes in lipoprotein cholesterol (C) concentrations. Older men (n = 5, age 68.0 ± 4.6 years) and postmenopausal women (n = 7, age 60.9 ± 3.1 years) were assigned randomly to consume ground‐beef containing 18% total fat (18F) or 25% total fat (25F), five patties per week for 5 weeks with an intervening 4‐week washout period. The 25F and 18F ground‐beef increased (p < 0.05) the intake of saturated fat, monounsaturated fat, palmitic acid, and stearic acid, but the 25F ground‐beef increased only the intake of oleic acid (p < 0.05). The ground‐beefs 18F and 25F increased the plasma concentration of palmitic acid (p < 0.05) and decreased the plasma concentrations of arachidonic, eicosapentaenoic, and docosahexaenic acids (p < 0.05). The interventions of 18F and 25F ground‐beef decreased very low‐density lipoprotein C concentrations and increased particle diameters and low‐density lipoprotein (LDL)‐I‐C and LDL‐II‐C concentrations (p < 0.05). The ground‐beef 25F decreased PBMC mRNA levels for the adenosine triphosphate (ATP) binding cassette A, ATP binding cassette G1, sterol regulatory element binding protein‐1, and LDL receptor (LDLR) (p < 0.05). The ground‐beef 18F increased mRNA levels for stearoyl‐CoA desaturase‐1 (p < 0.05). We conclude that the increased LDL particle size and LDL‐I‐C and LDL‐II‐C concentrations following the 25F ground‐beef intervention may have been caused by decreased hepatic LDLR gene expression.  相似文献   

5.
The influence of dietary Tetracarpidium conophorum (African Walnut) seed meal (TCSM) on fatty acids, productivity parameters, and physicochemical properties of breast and thigh muscles in broiler chickens are assessed. A total of 180, 28‐d‐old Arbor acre broiler chickens are randomly assigned to dietary treatments containing 0% (control), 2.5%, and 5% w/w TCSM, fed for 28 d, and euthanized. Dietary TCSM reduces (p < 0.05) feed intake, body weight gain (BWG), carcass weight, and abdominal fat. Diet does not affect feed efficiency and hematological parameters. The control birds have higher (p < 0.05) serum total cholesterol and triglycerides than do the supplemented birds. Diet has no effect on pH, water holding capacity, carbonyl and malondialdehyde contents, and organoleptic properties of breast and thigh muscles. The 5% TCSM has higher redness in breast muscle than do other treatments. Dietary TCSM improves (p < 0.05) the concentration of C18:3n‐3 (4.80–8.76% vs 1.56%), C20:5n‐3 (0.54–0.79% vs 0.39%), C22:5n‐3 (0.64–0.89% vs 0.18%), and C22:6n‐3 (0.75–0.97% vs 0.19%), and reduces (p <  0.05) the fat content (2.15–2.45% vs 3.15%) in breast and thigh muscles. Dietary TCSM enhances muscle n‐3 fatty acids without instigating oxidative deterioration, but reduces BWG in broiler chickens. Practical Application: Albeit that broiler meat is rich in polyunsaturated fatty acids (PUFA), its omega 6 (n‐6)/omega 3 (n‐3) is >4. Elevated n‐6/n‐3 could have adverse effect on human physiology thereby promoting the pathogenesis of certain diseases. This heightens the need to enhance the n‐3 PUFA content of broiler meat. Dietary TCSM induced up to a fourfold increase in n‐3 PUFA content of the breast and thigh muscles in broiler chickens. Moreover, dietary TCSM induced up to a tenfold decrease in the n‐6/n‐3 of the breast and thigh muscles in broiler chickens. This finding assumes great significance because the health concerns regarding dietary fat are the foremost factors responsible for the bad image suffered by meat. These results provide insights on the potential of TCSM to improve the nutritional quality without compromising the oxidative shelf life, organoleptic traits, and physicochemical properties of broiler meat.  相似文献   

6.
Palm oil is a rich source of vitamin E. The tocotrienol‐rich fraction (TRF) extracted from palm oil contain 70% tocotrienols and 30% tocopherols. The effect of TRF supplementation on the immune modulation was evaluated in 6‐wk‐old female BALB/c mice immunized with ovalbumin (OVA) adjuvanted with alum. Mice in control and experimental groups were immunized subcutaneously (s.c.) on days 14 and 28 with a single dose of 50 µg OVA. The mice in the experimental group were orally gavaged daily with 1 mg of TRF from palm oil while those in the control group received carrier oil. The results show that mice in the experimental group produced significantly (p<0.05) higher levels of interferon‐gamma (IFN‐γ) compared to the control group. There was no significant (p>0.05) difference in the levels of interleukin‐4 (IL‐4) produced between the control and experimental animals. Lymphocyte proliferation in response to mitogen or OVA stimulation was significantly (p<0.05) higher in splenocytes derived from the TRF supplemented mice compared to control mice. These findings show that daily supplementation of palm TRF can induce a strong cell‐mediated immune response, i.e., T‐helper‐1 (Th1) response, which would be beneficial to fight viral infections and cancer.  相似文献   

7.
8.
This study was conducted to compare the effects of fish oil and olive oil supplementation in late pregnancy and during lactation on oxidative stress and inflammation in sows and their piglets. A total of 24 sows were fed a basal diet supplemented with additional corn starch (CON), fish oil (FO) or olive oil (OO). Sows fed an OO diet during late gestation had a higher piglet birth weight compared with CON‐fed and FO‐fed sows (P < 0.05). Furthermore, sows from the OO group had a higher milk fat content than sows from CON and FO groups, and a lower pre‐weaning mortality of piglets was observed in the OO group (P < 0.05). Maternal FO supplementation resulted in increased malondialdehyde concentration in sow plasma, colostrum, milk and piglet plasma than in CON and OO groups (P < 0.05). However, an increased total antioxidant capacity (T‐ACC) and activities of glutathione peroxidase (GSH‐Px) and total superoxide dismutase (T‐SOD) were also observed in the FO group (P < 0.05). Sows fed an OO diet had significantly decreased interleukin‐1β (IL‐1β), interleukin‐6 (IL‐6) and tumor necrosis factor‐α (TNF‐α) concentrations in milk compared with CON and FO fed sows (P < 0.05). Moreover, lower plasma IL‐1β and TNF‐α levels were observed in piglets from the OO group compared with the CON group (P < 0.05). Collectively, these results suggest that an OO diet is most beneficial in late gestation and during lactation in sows. However, FO increases the susceptibility to oxidative stress in sows and piglets.  相似文献   

9.
Shumin Qin  Jinjin Yin  Keer Huang 《Lipids》2016,51(7):797-805
Excessive fat accumulation and increased oxidative stress contribute to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, the mechanisms underlying the development of steatosis are not entirely understood. The present study was undertaken to establish an experimental model of hepatocellular steatosis with a fat overaccumulation profile in which the effects of oxidative stress could be studied in L‐02 cells. We investigated the effects of free fatty acids (FFA) (palmitate:oleate, 1:2) on lipid accumulation and oxidative stress and their possible mechanisms in L‐02 cells. High concentrations of fatty acids significantly induced excessive lipid accumulation and oxidative stress in L‐02 cells, which could only be reversed with 50 μΜ WY14643 (the PPARα agonist). Immunoblotting and qPCR analyses revealed that FFA downregulated the expression of proliferator‐activated receptor alpha (PPARα), which contributed to the increased activation of sterol regulatory element binding protein‐1c (SREBP‐1c). These results suggest that FFA induce lipid accumulation and oxidative stress in L‐02 cells by upregulating SREBP‐1c expression through the suppression of PPARα.  相似文献   

10.
Effect of conjugated linoleic acid on body composition in mice   总被引:55,自引:7,他引:55  
The effects of conjugated linoleic acid (CLA) on body composition were investigated. ICR mice were fed a control diet containing 5.5% corn oil or a CLA-supplemented diet (5.0% corn oil plus 0.5% CLA). Mice fed CLA-supplemented diet exhibited 57% and 60% lower body fat and 5% and 14% increased lean body mass relative to controls (P<0.05). Total carnitine palmitoyltransferase activity was increased by dietary CLA supplementation in both fat pad and skeletal muscle; the differences were significant for fat pad of fed mice and skeletal muscle of fasted mice. In cultured 3T3-L1 adipocytes CLA treatment (1×10−4 M) significantly reduced heparin-releasable lipoprotein lipase activity (−66%) and the intracellular concentrations of triacylglyceride (−8%) and glycerol (−15%), but significantly increased free glycerol in the culture medium (+22%) compared to control (P<0.05). The effects of CLA on body composition appear to be due in part to reduced fat deposition and increased lipolysis in adipocytes, possibly coupled with enhanced fatty acid oxidation in both muscle cells and adipocytes.  相似文献   

11.
A maternal high fat diet (HFD) can have adverse effects on skeletal muscle development. Skeletal muscle PLIN proteins (PLIN2, 3 and 5) are thought to play critical roles in lipid metabolism, however effects of HFD on PLIN and lipases (HSL, ATGL, CGI‐58) in mothers as well as their offspring have yet to be investigated. The primary objective of this study was to determine whether maternal HFD would influence skeletal muscle lipase and PLIN protein content in offspring at weaning (19d) and young adulthood (3mo). Female rats (28d old, n = 9/group) were fed control (CON, AIN93G, 7 % soybean oil) or HFD (AIN93G, 20 % lard) for 10 weeks prior to mating and throughout pregnancy and lactation. All offspring were weaned to CON [n = 18/group, 1 female and 1 male pup per litter were studied at weaning (19d) and 3mo of age]. There was no effect of sex for the main outcomes measured in plantaris, therefore male and female data was combined. Maternal HFD resulted in higher triacylglycerol content in pups at 3mo (p < 0.05), as well as in the dams (p = 0.015). Maternal HFD resulted in higher PLIN5 content in pups at weaning and 3mo (p = 0.05). PLIN2 and PLIN5 content decreased at 3mo versus weaning (p < 0.001). HFD dams had a higher PLIN3 content (p = 0.016). Diet had no effect on ATGL, CGI‐58, or HSL content. In conclusion, exposure to a maternal HFD resulted in higher skeletal muscle lipid and PLIN5 content in plantaris of offspring through to young adulthood.  相似文献   

12.
Metaglidasen is a fibrate‐like drug reported as a selective modulator of peroxisome proliferator‐activated receptor γ (PPARγ), able to lower plasma glucose levels in the absence of the side effects typically observed with thiazolidinedione antidiabetic agents in current use. Herein we report an improved synthesis of metaglidasen′s metabolically active form halofenic acid (R)‐ 2 and that of its enantiomer (S)‐ 2 . The activity of the two stereoisomers was carefully examined on PPARα and PPARγ subtypes. As expected, both showed partial agonist activity toward PPARγ; the investigation of PPARα activity, however, led to unexpected results. In particular, (S)‐ 2 was found to act as a partial agonist, whereas (R)‐ 2 behaved as an antagonist. X‐ray crystallographic studies with PPARγ were carried out to gain more insight on the molecular‐level interactions and to propose a binding mode. Given the adverse effects provoked by fibrate drugs on skeletal muscle function, we also investigated the capacity of (R)‐ 2 and (S)‐ 2 to block conductance of the skeletal muscle membrane chloride channel. The results showed a more beneficial profile for (R)‐ 2 , the activity of which on skeletal muscle function, however, should not be overlooked in the ongoing clinical trials studying its long‐term effects.  相似文献   

13.
The effects of lipoic acid (LA) on the antioxidant status of broilers were investigated. Birds (1 day old) were randomly assigned to four groups and fed corn-soybean diets supplemented with 0, 100, 200, 300 mg/kg LA, respectively. The feeding program included a starter diet from 1 to 21 days of age and a grower diet from 22 to 42 days of age. Serum, liver and muscle samples were collected at 42 days of age. For antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in serum, liver and breast muscle significantly increased in chickens fed with LA. The concentration of malondiadehyde (MDA), an indicator of lipid peroxidation, was significantly lower in serum, liver and leg muscle in birds that received LA than in the control group. Treatments with LA significantly increased glutathione (GSH) content in liver and increased α-tocopherol content in leg muscle as compared to the control. These results indicate that dietary supplementation with 300 mg/kg LA may enhance antioxidant capability and depress oxidative stress in broilers.  相似文献   

14.
Dietary supplementation with marine omega‐3 polyunsaturated fatty acids (n‐3 PUFA) can have beneficial effects on a number of risk factors for cardiovascular disease (CVD). We compared the effects of two n‐3 PUFA rich food supplements (freeze‐dried Odontella aurita and fish oil) on risk factors for CVD. Male rats were randomly divided into four groups of six animals each and fed with the following diets: control group (C) received a standard diet containing 7 % lipids; second group (HF high fat) was fed with a high‐fat diet containing 40 % lipids; third group (HFFO high fat+fish oil) was fed with the high‐fat diet supplemented with 0.5 % fish oil; and fourth group (HFOA high fat+O. aurita) received the high‐fat diet supplemented with 12 % of freeze‐dried O. aurita. After 8 weeks rats fed with the high‐fat diet supplemented with O. aurita displayed a significantly lower bodyweight than those in the other groups. Both the microalga and the fish oil significantly reduced insulinemia and serum lipid levels. O. aurita was more effective than the fish oil in reducing hepatic triacyglycerol levels and in preventing high‐fat diet‐induced steatosis. O. aurita and fish oil also reduced platelet aggregation and oxidative status induced by high fat intake. After an OA supplementation, the adipocytes in the HFOA group were smaller than those in the HF group. Freeze‐dried O. aurita showed similar or even greater biological effects than the fish oil. This could be explained by a potential effect of the n‐3 PUFA but also other bioactive compounds of the microalgae.  相似文献   

15.
16.
Epidemiological and experimental studies provide supportive evidence that lutein, a major carotenoid, may act as a chemopreventive agent against atherosclerosis, although the underlying molecular mechanisms are not well understood. The main aim of this study was to investigate the effects of lutein on the alleviation of atherosclerosis and its molecular mechanisms involved in oxidative stress and lipid metabolism. Male apolipoprotein E knockout mice (n = 55) were fed either a normal chow diet or a high fat diet (HFD) supplemented with or without lutein for 24 weeks. The results showed that a HFD induced atherosclerosis formation, lipid metabolism disorders and oxidative stress, but noticeable improvements were observed in the lutein treated group. Additionally, lutein supplementation reversed the decreased protein expression of aortic heme oxygenase‐1 and increased the mRNA and protein expressions of aortic nicotinamide‐adenine dinucleotide phosphate oxidase stimulated by a HFD. Furthermore, the decreased mRNA and protein expression levels of hepatic peroxisome proliferator‐activated receptor‐α, carnitine palmitoyltransferase 1A, acyl CoA oxidase 1, low density lipoprotein receptors and scavenger receptor class B type I observed in mice with atherosclerosis were markedly enhanced after treatment with lutein. Taken together, these data add new evidence supporting the anti‐atherogenic properties of lutein and describing its mechanisms of action in atherosclerosis prevention, including oxidative stress and lipid metabolism improvements.  相似文献   

17.
The effect of dietary conjugated linoleic acid (CLA) supplementation in combination with fat from vegetable versus animal origin on the fatty acid deposition, including that of individual 18:1 and 18:2 (conjugated and non-conjugated) isomers, in the liver and muscle of obese rats was investigated. For this purpose, 32 male Zucker rats were randomly assigned to one of four diets containing palm oil or ovine fat, supplemented or not with 1% of 1:1 cis(c)9,trans(t)11 and t10,c12 CLA isomers mixture. Total fatty acid content decreased in the liver and muscle of CLA-fed rats. In the liver, CLA increased saturated fatty acids (SFA) in 11.9% and decreased monounsaturated fatty acids (MUFA) in 6.5%. n-3 Polyunsaturated fatty acids (PUFA) relative proportions were increased in 30.6% by CLA when supplemented to the ovine fat diet. In the muscle, CLA did not affect SFA but decreased MUFA and PUFA percentages. The estimation of Δ9-indices 16 and 18 suggested that CLA inhibited the stearoyl-CoA desaturase activity in the liver (a decrease of 13–38%), in particular when supplemented to the ovine fat diet. Concerning CLA supplementation, the t10,c12 isomer percentage was 60–80% higher in the muscle than in the liver. It is of relevance that rats fed ovine fat, containing bio-formed CLA, had more c9,t11 CLA isomer deposited in both tissues than rats fed palm oil plus synthetic CLA. These results highlight the importance to further clarify the biological effects of consuming foods naturally enriched in CLA, alternatively to CLA dietary supplementation.  相似文献   

18.
A dietary rosemary extract (DRE) containing carnosic acid and carnosol at 1:1 (w/w) for enhancing the lipid oxidative stability in cooked‐chilled lamb meat, is evaluated. Three diets for fattening lambs are tested: i) a cereal‐based concentrate (C‐diet); ii) the C‐diet plus 600 mg vitamin E per kg feed (E‐diet); and iii) the C‐diet plus 600 mg rosemary diterpenes per kg feed (R‐diet). Griddled‐chilled lamb patties are kept at 4 °C and lighting for 2 days, simulating catering conditions. Diterpenes have a lower deposition rate than vitamin E in lamb muscle and are completely degraded during cooking. DRE is thus less effective than dietary vitamin E in enhancing the oxidative stability of the patties. After 2‐day storage, the R‐diet shows lower (p < 0.01) peroxide values and thiobarbituric acid reactive substances than the C‐diet, while, in contrast to the E‐diet, it does not inhibit (p > 0.05) the formation of cholesterol oxidation products. The R‐diet increases (p < 0.05) the proportion of polyunsaturated fatty acids and decreases (p < 0.05) the n‐6/n‐3 ratio. These findings suggest antioxidant protection by dietary bioactive compounds beyond the direct radical scavenging activity that is able to stabilize lipids during the meat shelf‐life. Practical Applications: Cooked‐chilled meat lipids strongly oxidize in ready‐to‐eat dishes kept in retailing conditions, which may negatively affect their levels of polyunsaturated fatty acids (PUFA), cholesterol oxidation products (COP), and other lipid oxidation products. Dietary rosemary diterpenes can be used as a clean alternative to feed additives to enhance the oxidative stability of cooked‐chilled meat. Improved health and antioxidant status of the animal might be able to reduce oxidative spoilage during meat shelf‐life. Diterpenes provide lesser antioxidant protection than dietary vitamin E but may improve the PUFA content, with positive implications for the nutritional quality of lamb fat. The use of dietary antioxidants with different properties may contribute to improving the efficacy of animal feeds to improve meat quality.  相似文献   

19.
Seasonal variation of octopus (Octopus vulgaris) lipid composition was investigated in four tissues: arm, mantle, ovary and digestive gland. A non‐homogeneous fat distribution was observed, with the digestive gland exhibiting a higher (p <0.05) lipid content than the other tissues. The ovary showed a higher (p <0.05) fat content than both muscle tissues, reaching its highest (p <0.05) value in winter. Neutral lipids – free fatty acids (FFA), triacylglycerols, and sterols (ST) – exhibited their highest (p <0.05) concentrations in the digestive gland and their lowest (p <0.05) values in muscle tissues. The phospholipid (PL) content of the ovary was the highest (p <0.05) of all tissues analysed, with the PL content also being significantly (p <0.05) higher in the digestive gland than in arm and mantle. The concentrations of most lipid classes (FFA, PL and ST) exhibited a seasonal variation. The fatty acid composition showed a remarkable difference between the digestive gland and all other tissues analysed. Thus, the digestive gland exhibited higher (p <0.05) contents in monounsaturated fatty acids and also lower (p <0.05) contents in both saturated (SFA) and polyunsaturated (PUFA) fatty acids. The highest mean values in SFA and PUFA were observed in ovary and muscle tissues, respectively. A seasonal effect was observed for SFA and PUFA.  相似文献   

20.
Moon JH  Lee JY  Kang SB  Park JS  Lee BW  Kang ES  Ahn CW  Lee HC  Cha BS 《Lipids》2010,45(12):1109-1116
Saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) show different effects on the development of insulin resistance. In this study, we compared the effect of dietary SFA and MUFA on the insulin signaling pathway in the skeletal muscle of a type 2 diabetic animal model. Twenty-nine-week-old male Otsuka Long-Evans Tokushima fatty (OLETF) rats were randomly divided into three groups and fed one of the following diets for 3 weeks; a normal chow diet, an SFA (lard oil) enriched or a MUFA (olive oil) enriched high-fat diet. The vastus lateralis muscle was used for analyses. Insulin tolerance test showed improved insulin sensitivity in rats fed the MUFA diet, as compared to those fed the SFA diet (p < 0.001). The SFA diet reduced IRS-1 expression and phosphorylated PI3K levels in skeletal muscle, as compared with a chow diet (p < 0.001, respectively). On the contrary, muscle IRS-2 expression and phosphorylated ERK1/2 was significantly increased in rats fed the SFA diet (p < 0.001, respectively). Membrane translocation of glucose transporter type 4 decreased in the skeletal muscle of rats fed the SFA diet, as compared to those fed a chow diet (p < 0.001). These changes in insulin signaling pathway in skeletal muscle were not observed in rats fed the MUFA diet. In conclusion, the beneficial effect of dietary MUFA on insulin sensitivity is associated with a conserved IRS-1/PI3K insulin signaling pathway which was altered by dietary SFA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号