首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 375 毫秒
1.
运用爆炸相似理论,在无限空间中炸药爆炸冲击波的超压规律基础上,考虑瓦斯浓度、巷道截面积、冲击波传播距离、混合物体积等因素,建立了煤矿掘进巷道内瓦斯爆炸冲击波的超压预测模型。根据一定的实验数据,拟合出超压与瓦斯浓度、冲击波传播距离,以及与瓦斯—空气混合物体积之间的关系。通过实例对该模型进行验证,结果表明模型预测数据与实验数据比较吻合。  相似文献   

2.
运用爆炸相似理论,在无限空间中炸药爆炸冲击波的超压规律基础上,考虑瓦斯浓度、巷道截面积、冲击波传播距离、混合物体积等因素,建立了煤矿掘进巷道内瓦斯爆炸冲击波的超压预测模型。根据一定的实验数据,拟合出超压与瓦斯浓度、冲击波传播距离,以及与瓦斯—空气混合物体积之间的关系。通过实例对该模型进行验证,结果表明模型预测数据与实验数据比较吻合。  相似文献   

3.
通过对空气中冲击波超压峰值的理论分析,基于TNT当量法对煤矿巷道内瓦斯爆炸超压数据进行研究,建立了煤矿巷道内瓦斯爆炸超压预测模型,并通过与实验测量值的比较,对模型进行了修正,该预测模型可以为矿井安全设施设计、事故灾害程度评估、安全设施审查提供理论依据.  相似文献   

4.
瓦斯浓度对瓦斯爆炸影响的数值模拟研究   总被引:2,自引:0,他引:2  
采用流体动力学软件Fluent,对方形管道内体积分数分别为7.5%,9.5%,11.5%的瓦斯气体爆炸过程进行数值模拟研究,分析其爆炸过程中的压力、温度和火焰传播速度。结果表明:在3种不同浓度的瓦斯气体爆炸过程中,火焰的传播趋势大致相同,但火焰传播速度、管道内的超压以及温度有较大的区别;体积分数为9.5%的瓦斯气体爆炸过程中火焰传播速度、超压和温度均最大。模拟结果与前人的实验结果吻合。  相似文献   

5.
运用AutoReaGas软件建立了长为100 m,截面为0.08 m×0.08 m的爆炸巷道,其中前10 m巷道均匀充满体积分数9.5%的甲烷与空气预混气体。结果表明:在瓦斯爆炸传播过程中,最大超压呈现先减小、后增大、再减小的变化过程,它在火焰熄灭的位置附近达到最大。最大燃烧速率和火焰传播速度均随着传播距离的增加而增大,取得最大值后又开始减小。最大超压和最大气流速度在距离点火源35 m时均已减小为零,最大密度在此点也减小为原始密度,此条件下的防爆安全距离为35 m。最大燃烧速率和火焰传播速度在距离点火源17 m时均已减小为零,火焰锋面传播的最大距离为17 m。气体发生逆流与火焰的存在有关。研究成果可为煤矿瓦斯爆炸最佳避灾路线的确定、爆炸发生后的抢险救灾、事故的调查等提供参考。  相似文献   

6.
为了探索瓦斯在煤矿井下复杂巷网内爆炸后的超压演化规律及火焰传播特性,在实验室自行搭建了瓦斯爆炸试验系统,对甲烷体积分数为9.5%的瓦斯爆炸爆燃波传播规律进行了试验研究,并对瓦斯爆炸超压及火焰传播过程进行了数值模拟。试验与数值模拟结果表明:管网角联分支中,甲烷-空气预混气体爆炸后由于爆炸压力波的叠加,形成超压增高区域,但产生的火焰波很微弱,温度较低。并联分支中,随着爆燃波传播距离的增加,超压峰值和焰面传播速度呈逐渐减小的趋势,而火焰持续时间呈先增加、再减小的趋势。试验中火焰的最大传播距离为18.75 m,而数值模拟的传播距离为21.25 m,但试验值和模拟值的变化趋势一致。研究结论可对煤矿井下复杂巷道内瓦斯爆炸灾害的防控及救灾提供理论支持。  相似文献   

7.
全尺寸独头巷道内瓦斯爆炸超压预测模型   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对TNT当量法理论的分析,以及对全尺寸独头巷道内瓦斯爆炸超压数据的研究,建立了全尺寸独头巷道内瓦斯爆炸超压随距离衰减的预测模型,并通过3个实例对其进行了验证.验证结果表明:该预测模型的计算值和实验值吻合较好.  相似文献   

8.
管道中煤尘爆炸特性实验   总被引:4,自引:2,他引:2       下载免费PDF全文
宫广东 《煤炭学报》2010,35(4):609-612
在长度为32.4 m、内径为199 mm的圆形管道中采用强点火方式对甲烷-空气混合物及甲烷-煤尘-空气混合物爆炸超压传播规律及爆速进行了研究。研究结果表明:强点火条件下甲烷-空气混合物的最大爆压和爆速分别为4 MPa、1 766 m/s,在标准状态瓦斯爆炸极限浓度外2.5%、4.1%、15.2%时也出现稳定爆轰。相同浓度甲烷-煤尘-空气混合物爆炸超压及爆速要大于甲烷-空气、煤尘-空气混合物,甲烷-煤尘-空气混合物在爆炸当量浓度时,随着煤尘浓度越大,瓦斯浓度越小,爆炸超压和爆速越小。  相似文献   

9.
《煤炭学报》2021,46(6)
在实际矿井下,瓦斯泄漏后往往在巷道密闭空间内形成分层的、含体积分数梯度的甲烷-空气混合物。目前,国内外研究大多集中在均匀预混瓦斯爆炸火焰传播特性方面。为探究非均匀预混瓦斯爆炸火焰传播特性,通过自主搭建的小尺寸爆炸实验平台,对比研究了管道内甲烷不同自由扩散时间下,甲烷沿管道体积分数梯度分布及非均匀预混甲烷/空气爆炸火焰传播特性。实验通过浓度传感器、高速摄像机、压力传感器获取不同工况下非均匀甲烷爆炸过程中的甲烷体积分数分布、火焰传播结构、甲烷爆炸超压等数据,并进一步分析得出火焰传播速度、爆炸压升曲线等。结果表明:甲烷在管道内泄漏后,受浮力作用沿管道顶部横向传播,同时受体积分数差向底部纵向扩散,形成横向及纵向的体积分数梯度场,且自由扩散时间越短,体积分数梯度越大。体积分数梯度场对管道内非均匀甲烷爆炸火焰传播结构与爆炸超压有显著影响。甲烷体积分数梯度场下形成的非均匀预混火焰在管道内传播经历球形、指形、三重火焰、拉伸三重火焰4个阶段。当甲烷沿管道形成纵向体积分数梯度时,管道内出现三重火焰,且体积分数梯度越大,三重火焰结构愈发明显,三重火焰形态出现后,火焰传播速度、爆炸超压迅速下降,管道内甲烷纵向体积分数分布为16%—4.6%—0时,三重火焰稳定传播时火焰速度约为4.8 m/s。随三重火焰继续传播,火焰传播速度、爆炸超压略有上升趋势。管道内甲烷空气非均匀预混时爆炸超压呈现2个峰值,后波峰压力峰值约为前波峰2/3,压力峰值间隔时间随体积分数梯度减小而减小,且在不同体积分数梯度下,甲烷体积分数越接近当量比时火焰传播速度越快,爆炸超压越高。  相似文献   

10.
为了研究矿井巷道内瓦斯爆炸火焰传播过程中产生的火焰压力与已燃气体体积的关系,采用自行设计的横断面为200mm×200mm的方形实验管道进行实验.得出了实验管道内最大超压值和前驱压力波最大值与各测点位置的关系.研究了理想状态下不同时刻压力和已燃气体的数量体积关系.结果表明管道内瓦斯爆炸火焰传播过程中产生的压力随着已燃气体体积的增加而增大.  相似文献   

11.
李江涛 《煤矿安全》2013,(2):157-160
瓦斯灾害是影响煤矿安全的重要问题之一,而爆炸后的主要危害之一是冲击波的伤害。而且,煤矿防隔爆措施是否能起到有效作用也依赖于冲击波超压值的测量和预测。在前人实验分析的基础上,应用神经网络理论,分别用BP神经网络和RBF神经网络对瓦斯爆炸后的冲击波超压值和测点之间的关系进行了预测。结果表明,BP神经网络的预测误差最小,应用神经网络进行预测可以明显的减小预测的误差,适合煤矿企业实际应用。  相似文献   

12.
 为了探究煤矿瓦斯爆炸事故中瓦斯爆炸火焰锋面特征,在实验室模拟巷道的小型管道内进行瓦斯爆炸火焰传播实验。在管道内同一截面处,利用微细热电偶、离子探针、压力传感器及光电传感器同时测得了火焰锋面温度、离子电流强度、压力、光信号。对四种火焰锋面参数信号比较分析,结果表明:传播火焰阵面的火焰光信号、温度信号、离子电流信号稍快于压力信号,瓦斯浓度为10.17%的传播火焰在测点处火焰锋面最高温度值为1238.8℃,最高压力值为2.28atm,最高离子电流强度值为258nA;处理热电偶温度信号计算出的火焰锋面厚度为44.8cm和离子电流信号计算出的火焰锋面厚度为68.5cm,两者属于同一数量级。实验结论为进一步认识瓦斯爆炸火焰锋面在瓦斯爆炸事故中的作用和矿井防爆设备和预警设计提供一定的参考依据。  相似文献   

13.
基于FLACS的受限空间瓦斯爆炸数值模拟   总被引:4,自引:0,他引:4       下载免费PDF全文
罗振敏  张群  王华  程方明  王涛  邓军 《煤炭学报》2013,38(8):1381-1387
为了对矿井瓦斯爆炸灾害进行有效防治、安全评估和事故调查,采用XKWB-1型近球型密闭式气体爆炸特性测试装置进行甲烷爆炸实验,并应用FLACS软件对该爆炸过程进行数值模拟,二者对比表明添加辐射模型的模拟与实验结果基本吻合,平均误差1.88%,说明辐射换热是瓦斯爆炸过程中除热传导和热对流外主要的热量传递方式。模拟结果表明,瓦斯爆炸燃烧波以近球面波的形式向四周传播,小空间内各点压力很快达到均匀,从容器壁面到点火源处温度梯度不断增大;当火焰面传至壁面附近时,未燃气体受壁面作用产生回流,上下、左右的回流气体相遇形成的涡旋使火焰加速,在可燃性气体燃烬时爆炸超压达到最大值。添加辐射换热模型的模拟结果误差基本满足工程需要,可应用于更复杂空间的瓦斯爆炸过程模拟。  相似文献   

14.
基于气体爆炸动力学强冲击波爆炸等相关理论,根据瓦斯爆炸释放的能量,推导出爆炸后巷道内的超压、温度与至爆炸点距离的非线性计算公式,将计算值与试验值进行对比分析,得到瓦斯爆炸后冲击波的衰减规律,即爆炸后瞬间随传播距离的增加,巷道内超压和温度也都逐渐衰减。  相似文献   

15.
瓦斯和煤尘复合爆炸是煤矿井下爆炸灾害的主要形式之一,研究瓦斯/煤尘复合爆炸下限变化规律,是有效防治煤矿爆炸灾害的必备条件。为研究煤尘组分对瓦斯/煤尘复合爆炸下限的影响,特选用2种组分不同的煤尘(烟煤和无烟煤)。依据EN 14034标准,使用10 kJ化学点火头在标准20L球形爆炸容器中,分别对2种煤尘的最小爆炸浓度、相同试验条件下的瓦斯爆炸下限以及煤尘与瓦斯的复合爆炸下限进行了测量。试验测得烟煤和无烟煤的最小爆炸浓度分别为50 g/m^3和70 g/m^3,瓦斯爆炸下限为4%。当煤尘中分别通入1%、2%、3%、4%的瓦斯后,烟煤最小爆炸浓度分别降低至40、20、5、0 g/m^3,无烟煤最小爆炸浓度分别降低至50、20、5、0 g/m^3。基于上述测量结果,对比分析了煤尘组分对瓦斯/煤尘复合爆炸下限变化规律的影响,并探讨了Le Chatelier、Bartknecht、Jiang等气粉复合爆炸下限预测模型对瓦斯/煤尘复合体系的适用性。结果表明:2种煤尘的最小爆炸浓度均随瓦斯浓度的增大而降低,但挥发分含量低的煤尘降幅更大,即瓦斯对低挥发分煤尘最小爆炸浓度的影响更为显著。Jiang模型预测值远远偏离实际测量值;Le Chatelier模型预测值高于实际测量值,且误差随瓦斯浓度的增大而增大;Bartknecht模型适用性相对较好,且更适用于低挥发分瓦斯/煤尘复合体系。  相似文献   

16.
在Φ700 mm管道中进行了瓦斯爆炸压力峰值、火焰传播速度的试验研究,对不同点火能量条件下的瓦斯—空气混合气体爆炸试验研究结果表明:爆炸压力峰值在沿管道的传播过程中,从爆源点附近是先增大后减小,然后再逐渐增大的,且最大压力峰值出现在出口附近;火焰传播速度随着传播距离的增大而逐渐增大;点火能量对爆炸压力峰值、火焰传播速度等都有重要影响。这些研究结果为煤矿井下隔抑爆装置和瓦斯输送管道隔抑爆装置的研制及安装技术规范的制订奠定了理论基础,也为煤矿瓦斯爆炸事故调查分析提供了理论依据。  相似文献   

17.
为了研究不同孔隙泡沫陶瓷的导热性对抑制瓦斯爆炸的影响,通过对15 mm厚的细孔和中孔泡沫陶瓷在断面为200mm×200 mm的方形管道内进行爆炸实验,并对其进行导热系数的测定,以及其三维结构进行了微观分析.实验结果得出,细孔泡沫陶瓷的导热系数小于中孔泡沫陶瓷,细孔泡沫陶瓷对瓦斯爆炸的抑制效果比中孔泡沫陶瓷的好;结果表明,同一材质的抑爆材料,其导热性能越差,则其对瓦斯爆炸的抑制效果相对越好.研究结果对探索煤矿瓦斯爆炸抑制材料及其灾害防治具有重要的理论意义和实用价值.  相似文献   

18.
超细水雾-多孔材料协同抑制瓦斯爆炸实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
余明高  刘梦茹  温小萍  裴蓓 《煤炭学报》2019,44(5):1562-1569
为探究超细水雾与多孔介质在协同作用下对多孔介质淬熄效果以及多孔介质上游爆炸超压的影响,自行设计并搭建了尺寸为80 mm×80 mm×1 000 mm透明有机玻璃瓦斯爆炸管道实验平台,研究超细水雾质量分数、多孔材料孔径及孔隙率对9. 5%甲烷压的协同抑制效果。实验结果表明,改变超细水雾质量分数、多孔材料孔径以及孔隙率,在多孔材料上游,最大火焰传播速度和最大爆炸超压有着显著变化,随着超细水雾质量分数增加,火焰锋面传播速度峰值和爆炸超压逐渐减小,爆炸超压峰值出现时间随之缩短,而随着孔径的减小,火焰锋面传播速度也逐渐减小,压力衰减率明显增加。同时,超细水雾和多孔材料的组合方式对瓦斯爆炸具有耦合抑制作用,管道内通入超细水雾可吸收反应区大量热能,降低反应速率与火焰传播速度,此外多孔材料的存在吸收了部分前驱冲击波,破坏正反馈机制,因此两者协同抑制优于单一抑制效果。放置在管道中的多孔材料使得传播火焰淬熄,且添加的超细水雾降低了多孔材料上游的超压,但是一旦多孔介质淬熄失败,火焰湍流加剧,可能会导致更为严重的事故发生。此外,与9. 5%甲空气预混气相比,孔隙率为87%,孔隙密度为20 PPI和超细水雾质量浓度为1 453. 1 g s,下降比例达到44. 23%,且多孔材料上游的最大爆炸超压为6. 13 kPa,降低了40. 62%,抑制效果最明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号