首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The FB and FA electron acceptors in Photosystem I (PS I) are [4Fe-4S] clusters ligated by cysteines provided by PsaC. In a previous study (Mehari, T., Qiao, F., Scott, M. P., Nellis, D., Zhao, J., Bryant, D., and Golbeck, J. H. (1995) J. Biol. Chem. 270, 28108-28117), we showed that when cysteines 14 and 51 were replaced with serine or alanine, the free proteins contained a S = 1/2, [4Fe-4S] cluster at the unmodified site and a mixed population of S = 1/2, [3Fe-4S] and S = 3/2, [4Fe-4S] clusters at the modified site. We show here that these mutant PsaC proteins can be rebound to P700-FX cores, resulting in fully functional PS I complexes. The low temperature EPR spectra of the C14XPsaC.PS I complexes (where X = S, A, or G) show the photoreduction of a wild-type FA cluster and a modified FB' cluster, the latter with g values of 2.115, 1.899, and 1.852 and linewidths of 110, 70, and 85 MHz. Since neither alanine nor glycine contains a suitable side group, an external thiolate provided by beta-mercaptoethanol has likely been recruited to supply the requisite ligand to the [4Fe-4S] cluster. The EPR spectrum of the C51SPsaC.PS I complex differs from that of the C51APsaC.PS I or C51GPsaC.PS I complexes by the presence of an additional set of resonances, which may be derived from the serine oxygen-ligated cluster. In all other mutant PS I complexes, a wild-type spin-coupled interaction spectrum appears when FA and FB are simultaneously reduced. Single turnover flash studies indicate approximately 50% efficient electron transfer to FA/FB in the C14SPsaC.PS I, C51SPsaC.PS I, C14GPsaC.PS I, and C51GPsaC.PS I mutants and less than 40% in the C14APsaC.PS I and C51APsaC.PS I mutants, compared with approximately 76% in the PS I core reconstructed with wild-type PsaC. These data are consistent with the measurements of the rates of cytochrome c6-NADP+ reductase activity, indicating lower rates in the alanine mutants. It is proposed that the chemical rescue of a [4Fe-4S] cluster with a recruited external thiolate at the modified site allows the mutant PsaC proteins to rebind to PS I and to function in forward electron transfer.  相似文献   

2.
Vertebrate ferredoxins are 12-14-kDa iron-sulfur proteins, some of which transfer electrons to mitochondrial cytochrome P450s. The function of many of these cytochrome P450s is to catalyze stereospecific hydroxylation of endogenous steroids. As part of our interest in the kidney mitochondrial 1 alpha-hydroxylation of 25-hydroxyvitamin D3, we have constructed an expression plasmid coding for a fusion protein containing the chick kidney ferredoxin. We subcloned chick kidney ferredoxin cDNA, obtained from our vitamin D-deficient chick kidney library by polymerase chain reaction (Brandt, M. E., Gabrik, A. H., and Vickery, L. E. (1991) Gene (Amst.) 97, 113-117) into Qiagen's pQE9, which contains an N-terminal 6xHis tag (peptide sequence for 6 adjacent histidines present in the recombinant proteins). The coding sequence was preceded by a factor Xa cleavage site. The resulting plasmid, pQTcFdx, was overexpressed in Escherichia coli, and the soluble fusion protein was purified from the cell lysate in one step by Ni(II)-nitrilotriacetic acid-agarose chromatography. We obtained 7-10 mg of greater than 99% homogeneous fusion protein from a 1-liter culture and 4-6 mg of mature ferredoxin cleaved by factor Xa. The fusion protein possessed an absorption spectrum and an electron paramagnetic resonance spectrum quantitatively indistinguishable from those published for ferredoxin purified from adrenal glands and placenta or expressed in E. coli with another vector. The fusion protein was active in supporting the 1 alpha-hydroxylation of 25-hydroxyvitamin D3 in a reconstitution assay of a solubilized, partially purified preparation of cytochrome P450 from vitamin D-deficient chick kidney. We conclude that the procedure described here is an efficient way to produce and purify vertebrate ferredoxin; the [2Fe-2S] cofactor is assembled in vivo and effectively incorporated into the fusion protein in E. coli; slight alterations at the N terminus do not alter incorporation of the [2Fe-2S] cofactor or the biological activity of ferredoxin, and post-translational modifications, such as phosphorylation, are not an absolute requirement for ferredoxin electron transporting activity. The recombinant ferredoxin can be used for physical studies and other structure-function studies.  相似文献   

3.
The 2[4Fe-4S] ferredoxin from Chromatium vinosum arises as one prominent member of a recently defined family of proteins found in very diverse bacteria. The potentiometric circular dichroism titrations of the protein and of several molecular variants generated by site-directed mutagenesis have established that the reduction potentials of the two clusters differ widely by almost 200 mV. This large difference has been confirmed by electrochemical methods, and each redox transition has been assigned to one of the clusters. The unusually low potential center is surprisingly the one that displays a conventional CX1X2CX3X4C (Xn, variable amino acid) binding motif and a structural environment similar to that of clusters having less negative potentials. A comparison with other ferredoxins has highlighted factors contributing to the reduction potential of [4Fe-4S] clusters in proteins. (i) The loop between the coordinating cysteines 40 and 49 and the C terminus alpha-helix of C. vinosum ferredoxin cause a negative, but relatively moderate, shift of approximately 60 mV for the nearby cluster. (ii) Very negative potentials, below -600 mV, correlate with the presence of a bulky side chain in position X4 of the coordinating triad of cysteines. These findings set the framework in which previous observations on ferredoxins can be better understood. They also shed light onto the possible occurrence and properties of very low potential [4Fe-4S] clusters in less well characterized proteins.  相似文献   

4.
Eleven mutant forms of the ferredoxin from Clostridium pasteurianum (CpFd; 2 Fe4S4; 6200 Da) have been isolated in which six surface carboxylates are changed systematically to their uncharged but stereochemically equivalent carboxamide analogues. Such changes provide molecules which vary in overall charge and its surface distribution but vary minimally in structure and reduction potential. Glu-17 and Asp-6, -27, -33, -35, and -39 were converted providing six single mutants, four double mutants and one triple mutant. The proteins were characterised by UV-visible spectroscopy, square-wave voltammetry and 1H NMR. Their ability to mediate electron transfer between spinach NADH:ferredoxin oxidoreductase and horse heart cytochrome c was assessed. Each mutant is 30-100% as active as the recombinant protein with the triple mutant D33,35,39N being least active. Second-order rate constants k2 for the oxidation of reduced mutant ferredoxins by [Co(NH3)6]3+ were measured at 25 degrees C and I = 0.1 M by stopped-flow techniques. Each mutant displayed saturation kinetics with k2 being 30-100% of that for the recombinant protein. The rates were moderately sensitive to ionic strength. Variation in association constant K could not be detected within the confidence limits of the data. Overall the effects of the mutations were minor. In contrast to human and Anabaena 7120 [Fe2S2]-ferredoxins, electron transfer does not appear to rely on the presence of one or two specific surface carboxylate residues. It may occur from multiple sites on the surface of CpFd with recognition processes for its many physiological redox partners being controlled by relative reduction potentials, in addition to unidentified criteria. The conclusions are consistent with previous results for another series of mutant CpFd proteins interacting with physiological redox partners pyruvate: Fd oxidoreductase and hydrogenase (J.M. Moulis, V. Davasse (1995) Biochemistry 34, 16781-16788).  相似文献   

5.
Following the recently developed approach to the solution structure of paramagnetic high-potential iron-sulfur proteins, the three-dimensional structure in solution of the oxidized Clostridium pasteurianum ferredoxin has been solved by 1H-NMR. The X-ray structure is not available. The protein contains 55 amino acids and two [4Fe-4S] clusters. In the oxidized state, the clusters have S = 0 ground states, but are paramagnetic because of thermal population of excited states. Due to the somewhat small size of the protein and to the presence of two clusters, approximately 55% of the residues have at least one proton with a non-selective T1 smaller than 25 ms. The protein has thus been used as a test system to challenge the present paramagnetic NMR methodology both in achieving an extended assignment and in obtaining a suitable number of constraints. 79% of protein protons have been assigned. Analogy with other ferredoxins of known structure has been of help to speed up the final stages of the assignment, although we have shown that this independent information is not necessary. In addition to dipolar connectivities, partially detected through tailored experiments, 3JHN-H alpha, H-bond constraints and dihedral angle constraints on the Cys chi 2 angles have been generated by using a recently derived Karplus-type relationship for the hyperfine shifts of cysteine beta CH2 protons. In total, 456 constraints have been used in distance geometry calculations. The final quality of the structures is satisfactory, with root-mean-square deviation values of 66 pm and 108 pm for backbone and heavy atoms, respectively. The resulting structure is compared with that of Clostridium acidi urici ferredoxin [Duée, E. D., Fanchon, E., Vicat, J., Sieker, L. C., Meyer, J. & Moulis, J.-M. (1994) J. Mol. Biol. 243, 683-695]. The two proteins are very similar in the overall folding, secondary structure elements and side-chain orientations. The C alpha root-mean-square deviation values between the X-ray-determined C. acidi urici ferredoxin structure and the conformer with lowest energy of the C. pasteurianum ferredoxin family is 78 pm (residues 3-53). Discrepancies in residues 26-28 may arise from the disorder observed in the X-ray structure in that region.  相似文献   

6.
The [2Fe-2S] ferredoxin from Clostridium pasteurianum contains five cysteine residues in positions 11, 14, 24, 56, and 60. This pattern is unique, and a combination of site-directed mutagenesis and spectroscopy is therefore being implemented to identify the ligands of the [2Fe-2S] cluster. The possible involvement of ligands other than cysteine in some molecular variants of this ferredoxin has been considered, histidines being likely candidates. Therefore, the three histidine residues in positions 6, 7, and 90 of the amino acid sequence have been individually and collectively replaced by alanine or valine. The mutated ferredoxins have been purified and were all found to contain [2Fe-2S] clusters of which the UV-visible absorption spectra were identical to that of the wild-type protein. The H6A/H7A/ H90A triply mutated ferredoxin was further characterized by EPR and by ESEEM spectroscopy and was found to differ only marginally from the wild-type protein. The ESEEM spectra of wild-type ferredoxin displayed weak 14N hyperfine interactions at the three principal g-factors of the [2Fe-2S] center. The estimated 14N coupling constants (Aiso = 0.6 MHz; e2qQ approximately 3.3 MHz) indicate that the ESEEM effect is most likely due to 14N from the polypeptide backbone. 2H2O ESEEM spectra showed that the [2Fe-2S] cluster is accessible for exchange with solvent deuterons. ESEEM spectra of the previously characterized C24A and C14A/C24A variants have been recorded and were also found to be very similar to those of the wild-type protein. There was no evidence for coordination of the [2Fe-2S] cluster by [14N]histidine or other 14N nuclei, in either wild-type or mutant forms of the ferredoxin. By these criteria, the environment of the [2Fe-2S] center is not distinguishable from those in plant-type ferredoxins. Non-cysteinyl coordination most probably occurs only in the C14A/C24A variant, which contains no more than three cysteine residues. The data shown here indicate that the fourth ligand of the [2Fe-2S] cluster is neither a histidine residue nor another nitrogenous ligand. The possibility of oxygenic coordination for this molecular variant is discussed.  相似文献   

7.
Ferredoxin reductase (Fd-reductase) supplies electrons to mitochondrial steroid hydroxylase cytochrome P450 enzymes via a [2Fe-2S] ferredoxin. Chemical labeling studies with bovine Fd-reductase have implicated Lys-243 as important in binding to bovine ferredoxin (Hamamoto, I., Kazutaka, K., Tanaka, S., and Ichikawa, Y. (1988) Biochim. Biophys. Acta 953, 207-213). We have used site-directed mutagenesis to examine the role of charged residues in this region of human Fd-reductase in ferredoxin binding. Mutant proteins were expressed in Escherichia coli and were assayed for activity by ferredoxin-mediated electron transfer to cytochrome c. Replacement of Lys-242 (homologous to Lys-243 in bovine Fd-reductase) with Gln and replacement of Arg-241 with Ser had little effect (2.7- and 3.6-fold increased Km, respectively). In contrast, mutants at positions 239 and 243 (R239S and R243Q) exhibited markedly lower affinity for ferredoxin (17.5- and 1,600-fold increased Km, respectively). Studies were also carried out with two ferredoxin charge mutants shown previously to have lowered affinity for Fd-reductase (Coghlan, V. M., and Vickery, L. E. (1991) J. Biol. Chem. 266, 18606-18612). Comparisons of the binding of ferredoxin mutants D76N and D79N to Fd-reductase mutants R239S and R243Q suggest that Arg-239 and Arg-243 of Fd-reductase each interact directly with both Asp-76 and Asp-79 of ferredoxin during formation of the complex between the two proteins. These results support the hypothesis that specific electrostatic interactions involving this region are important in stabilizing the ferredoxin-Fd-reductase complex.  相似文献   

8.
Based on the DNA sequence of its structural genes, clustered in the hnd operon, the NADP-reducing hydrogenase of Desulfovibrio fructosovorans is thought to be a heterotetrameric complex in which HndA and HndC constitute the NADP-reducing unit and HndD constitutes the hydrogenase unit, respectively. The weak representativity of the enzyme among cell proteins has prevented its purification. This paper discusses the purification and characterization of the HndA subunit of this unique tetrameric iron hydrogenase overproduced in Escherichia coli. The purified subunit contains 1.7 mol of non-heme iron and 1.7 mol of acid-labile sulfide/mol. EPR analysis of the reduced form of HndA indicates that it contains a single binuclear [2Fe-2S] cluster. This cluster exhibits a spectrum of rhombic symmetry with values of gx, gy, and gz equal to 1.915, 1.950, and 2. 000, respectively, and a midpoint redox potential of -395 mV. The UV-visible and EPR spectra of the [2Fe-2S] cluster indicate that HndA belongs to the [2Fe-2S] family typified by the Clostridium pasteurianum [2Fe-2S] ferredoxin. The C-terminal sequence of HndA shows 27% identity with the C-terminal sequence of the 25-kDa subunit of NADH: quinone oxidoreductase from Paracoccus denitrificans, 33% identity with the C-terminal sequence of the 24-kDa subunit from Bos taurus complex I, and 32% identity with the entire sequence of C. pasteurianum [2Fe-2S] ferredoxin. The four cysteine residues involved in HndA cluster binding have been tentatively identified on the basis of sequence identity considerations. Evidence of a HndA organization based on two independent structural domains is discussed.  相似文献   

9.
A psaC deletion mutant of the unicellular cyanobacterium Synechocystis sp. PCC 6803 was utilized to incorporate site-specific amino acid substitutions in the cysteine residues that ligate the FA and FB iron-sulfur clusters in Photosystem I (PS I). Cysteines 14 and 51 of PsaC were changed to aspartic acid (C14DPsaC, C51DPsaC, C14D/C51DPsaC), serine (C14SPsaC, C51SPsaC), and alanine (C14APsaC, C51APsaC), and the properties of FA and FB were characterized by electron paramagnetic resonance spectroscopy and time-resolved optical spectroscopy. The C14DPsaC-PS I and C14SPsaC-PS I complexes showed high levels of photoreduction of FA with g values of 2.045, 1. 944, and 1.852 after illumination at 15 K, but there was no evidence of reduced FB in the g = 2 region. The C51DPsaC-PS I and C51SPsaC-PS I complexes showed low levels of photoreduction of FB with g values of 2.067, 1.931, and 1.881 after illumination at 15 K, but there was no evidence of reduced FA in the g = 2 region. The presence of FB was inferred in C14DPsaC-PS I and C14SPsaC-PS I, and the presence of FA was inferred in C51DPsaC-PS I and C51SPsaC-PS I by magnetic interaction in the photoaccumulated spectra and by the equal spin concentration of the irreversible P700(+) cation generated by illumination at 77 K. Flash-induced optical absorbance changes at 298 K in the presence of a fast electron donor indicate that two electron acceptors function after FX in the four mutant PS I complexes at room temperature. These data suggest that a mixed-ligand [4Fe-4S] cluster is present in the mutant sites of C14X-PS I and C51X-PS I (where X = D or S), but that the proposed spin state of S = 3/2 renders the resonances undetectable in the g = 2 region. The C14APsaC-PS I, C51APsaC-PS I and C14D/C51DPsaC-PS I complexes show only the photoreduction of FX, consistent with the absence of PsaC. These results show that only those PsaC proteins that contain two [4Fe-4S] clusters are capable of assembling onto PS I cores in vivo.  相似文献   

10.
A combination of structural, thermodynamic, and transient kinetic data on wild-type and mutant Anabaena vegetative cell ferredoxins has been used to investigate the nature of the protein-protein interactions leading to electron transfer from reduced ferredoxin to oxidized ferredoxin:NADP+ reductase (FNR). We have determined the reduction potentials of wild-type vegetative ferredoxin, heterocyst ferredoxin, and 12 site-specific mutants at seven surface residues of vegetative ferredoxin, as well as the one- and two-electron reduction potentials of FNR, both alone and in complexes with wild-type and three mutant ferredoxins. X-ray crystallographic structure determinations have been carried out for six of the ferredoxin mutants. None of the mutants showed significant structural changes in the immediate vicinity of the [2Fe-2S] cluster, despite large decreases in electron-transfer reactivity (for E94K and S47A) and sizable increases in reduction potential (80 mV for E94K and 47 mV for S47A). Furthermore, the relatively small changes in Calpha backbone atom positions which were observed in these mutants do not correlate with the kinetic and thermodynamic properties. In sharp contrast to the S47A mutant, S47T retains electron-transfer activity, and its reduction potential is 100 mV more negative than that of the S47A mutant, implicating the importance of the hydrogen bond which exists between the side chain hydroxyl group of S47 and the side chain carboxyl oxygen of E94. Other ferredoxin mutations that alter both reduction potential and electron-transfer reactivity are E94Q, F65A, and F65I, whereas D62K, D68K, Q70K, E94D, and F65Y have reduction potentials and electron-transfer reactivity that are similar to those of wild-type ferredoxin. In electrostatic complexes with recombinant FNR, three of the kinetically impaired ferredoxin mutants, as did wild-type ferredoxin, induced large (approximately 40 mV) positive shifts in the reduction potential of the flavoprotein, thereby making electron transfer thermodynamically feasible. On the basis of these observations, we conclude that nonconservative mutations of three critical residues (S47, F65, and E94) on the surface of ferredoxin have large parallel effects on both the reduction potential and the electron-transfer reactivity of the [2Fe-2S] cluster and that the reduction potential changes are not the principal factor governing electron-transfer reactivity. Rather, the kinetic properties are most likely controlled by the specific orientations of the proteins within the transient electron-transfer complex.  相似文献   

11.
The present study was designed to obtain evidence for direct interactions of G-protein alpha (Galpha) and beta gamma subunits (Gbeta gamma) with N- (alpha1B) and P/Q-type (alpha1A) Ca2+ channels, using synthetic peptides and fusion proteins derived from loop 1 (cytoplasmic loop between repeat I and II) and the C terminus of these channels. For N-type, prepulse facilitation as mediated by Gbeta gamma was impaired when a synthetic loop 1 peptide was applied intracellularly. Receptor agonist-induced inhibition of N-type as mediated by Galpha was also impaired by the loop 1 peptide but only when applied in combination with a C-terminal peptide. For P/Q-type channels, by contrast, the Galpha-mediated inhibition was diminished by application of a C-terminal peptide alone. Moreover, in vitro binding analysis for N- and P/Q-type channels revealed direct interaction of Galpha with C-terminal fusion proteins as well as direct interaction of Gbeta gamma with loop 1 fusion proteins. These findings define loop 1 of N- and P/Q-type Ca2+ channels as an interaction site for Gbeta gamma and the C termini for Galpha.  相似文献   

12.
The [2Fe-2S] ferredoxin produced in the heterocyst cells of Anabaena 7120 plays a key role in nitrogen fixation, where it serves as an electron acceptor from various sources and an electron donor to nitrogenase. The three-dimensional structure of this ferredoxin has now been determined and refined to a crystallographic R value of 16.7%, with all measured X-ray data from 30.0 to 1.7 A. The molecular motif of this ferredoxin is similar to that of other plant-type ferredoxins with the iron-sulfur cluster located toward the outer edge of the molecule and the irons tetrahedrally coordinated by both inorganic sulfurs and sulfurs provided by protein cysteinyl residues. The overall secondary structure of the molecule consists of seven strands of beta-pleated sheet, two alpha-helices, and seven type I turns. It is of special interest that 4 of the 22 amino acid positions thought to be absolutely conserved in nonhalophilic ferredoxins are different in the heterocyst form of the protein. Three of these positions are located in the metal-cluster binding loop.  相似文献   

13.
The rate constants for the intramolecular electron transfer between the two [4Fe-4S] clusters of a series of native and genetically engineered ferredoxins have been determined by proton magnetic resonance (1H NMR) spectroscopy. The measurement relies on the properties of the signals assigned to beta-protons of the coordinating cysteines when the protein is substoichiometrically reduced: these signals include coalesced peaks arising from the fast hopping of an extra electron between the two oxidized clusters of the protein. An upper limit of significantly less than 10(5) M(-1) s(-1) for the intermolecular and an average of the order of 5 x 10(6) s(-1) for the intramolecular electron transfer rate constants of several ferredoxins have been obtained. Owing to the edge-to-edge intercluster distance of approximately 10 A derived from the crystallographic structure of Clostridium acidurici ferredoxin, the rate constant associated with the intramolecular process is as expected for a nonadiabatic redox process, assuming a reasonable value of less than 1 eV for the reorganization energy. The latter could not be determined from the temperature dependence of the rate constant since no variation was observed over the temperature range accessible in these experiments. Structural changes introduced around and between the two [4Fe-4S] clusters in Clostridium pasteurianum ferredoxin by site-directed mutagenesis have been used to probe the potential involvement of dominant electron transfer pathways between the clusters. These changes have no major effect on the value of the intramolecular electron transfer rate constant. From this analysis, no specific amino acid side chain seems to play a central role in the process. The rate constants derived in the present work may serve as a basis for the study of enzymes containing two closely spaced [4Fe-4S] clusters such as found in these ferredoxins.  相似文献   

14.
Light-induced damage to photosystem I (PSI) was studied during low-light illumination of barley (Hordeum vulgare L.) at chilling temperatures. A 4-h illumination period induced a significant inactivation of PSI electron transport activity. Flash-induced P700 absorption decay measurements revealed progressive damage to (a) the iron-sulfur clusters FA and FB, (b) the iron-sulfur clusters FA, FB, and FX, and (c) the phylloquinone A1 and the chlorophyll AO or P700 of the PSI electron acceptor chain. Light-induced PSI damage was also evidenced by partial degradation of the PSI-A and PSI-B proteins and was correlated with the appearance of smaller proteins. Aggravated photodamage was observed upon illumination of barley leaves infiltrated with KCN, which inhibits Cu,Zn-superoxide dismutase and ascorbate peroxidase. This indicates that the photodamage of PSI in barley observed during low-light illumination at chilling temperatures arises because the defense against active oxygen species by active oxygen-scavenging enzymes is insufficient at these specific conditions. The data obtained demonstrate that photoinhibition of PSI at chilling temperatures is an important phenomenon in a cold-tolerant plant species.  相似文献   

15.
The solution structure of a murine-human chimera of leukemia inhibitory factor (LIF), a 180-residue cytokine with a molecular mass of 20 kDa, has been determined using multidimensional heteronuclear NMR techniques. The protein contains four alpha-helices, the relative orientations of which are well defined on the basis of long-range interhelical nuclear Overhauser effects. The helices are arranged in an up-up-down-down orientation, as found in other four-helix bundle cytokines, and the overall topology of the chimera is similar to that of the crystal structure of murine LIF (Robinson, R. C., Grey, L. M., Staunton, D., Vankelecom, H. Vernallis, A. B., Moreau, J. F., Stuart, D. I., Heath, J. K., and Jones, E. Y. (1994) Cell 77, 1101-1116). Differences between the structures are evident in the N-terminal region, where the peptide bond preceding Pro17 has a trans-conformation in solution but a cis-conformation in the crystal, and in the small antiparallel beta-sheet encompassing residues in the N terminus and the CD loop in the crystal structure, which is not apparent in solution. There are also minor differences in the extent of the helices. Other than at the N terminus, the main difference between the two structures occurs at the C-terminal end of the CD loop. As this loop is close to a receptor-binding site on LIF that makes a major contribution to high affinity binding to the LIF receptor alpha-chain, these differences between the solution and crystal structures should be taken into account in structural models of LIF receptor interactions.  相似文献   

16.
17.
The [2Fe-2S] ferredoxin extracted from Synechocystis sp. PCC 6803 was studied by 1H and 15N nuclear magnetic resonance. Sequence-specific 1H and 15N assignment of amino acid residues far from the paramagnetic cluster (distance higher than 8 A) was performed. Interresidue NOE constraints have allowed the identification of several secondary structure elements: one beta sheet composed of four beta strands, one alpha helix, and two alpha helix turns. The analysis of interresidue NOEs suggests the existence of a disulfide bridge between the cysteine residues 18 and 85. Such a disulfide bridge has never been observed in plant-type ferredoxins. Structure modeling using the X-PLOR program was performed with or without assuming the existence of a disulfide bridge. As a result, two structure families were obtained with rms deviations of 2.2 A. Due to the lack of NOE connectivities resulting from the paramagnetic effect from the [2Fe-2S] cluster, the structures were not well resolved in the region surrounding the [2Fe-2S] cluster, at both extremities of the alpha helix and the C and N terminus segments. In contrast, when taken separately, the beta sheet and the alpha helix were well defined. This work is the first report of a structure model of a plant-type [2Fe-2S] Fd in solution.  相似文献   

18.
The N-terminal cluster binding motif Cys8XXXXXXXCys16....Cys49 of Bacillus schlegelii 7Fe ferredoxin, which provides the ligands to the [Fe3S4]+ cluster, was modified by the mutation Asp13 --> Cys. The mutant D13C is expressed in Escherichia coli as an 8Fe ferredoxin, with NMR properties similar to those of clostridial-type ferredoxins. The full assignment of the hyperfine shifted resonances indicates that Cys13 serves as ligand to the new fourth iron atom in the N-terminal cluster despite the atypical binding sequence CysXXXXCysXXCys....Cys. The C alpha-C beta-S-Fe dihedral angles of all cysteine ligands to the two [Fe4S4]2+ clusters of the D13C variant are similar to those observed in other 8Fe and 4Fe ferredoxins.  相似文献   

19.
Horsetail (Equisetum telmateia) ferredoxins I and II. Amino acid sequences   总被引:1,自引:0,他引:1  
Two ferredoxins were isolated from horsetail (Equisetum telmateia) and their amino acid sequences were determined by use of a sequence analyzer in combination with carboxypeptidase digestion and manual Edman degradation of tryptic peptides of carboxymethyl-ferredoxins. Ferredoxins I and II each had only four cysteine residues in a total of 95 and 93 residues, respectively. The amino-terminal residues of both ferredoxins were heterogeneous, but alanine was concluded to be their genuine terminal residue. The comparison of these isozymelike molecules showed 29 differences in amino acid residues with three inverted replacements. One gap was inserted in ferredoxin II at position 32 to align the ferredoxins with greatest homology. Despite the many differences in amino acid residues there was no difference in net charges of the two ferredoxins.  相似文献   

20.
Mutations in the presenilin (PS) genes are linked to early onset familial Alzheimer's disease (FAD). PS-1 proteins are proteolytically processed by an unknown protease to two stable fragments of approximately 30 kDa (N-terminal fragment (NTF)) and approximately 20 kDa (C-terminal fragment (CTF)) (Thinakaran, G., Borchelt, D. R., Lee, M. K., Slunt, H. H., Spitzer, L., Kim, G., Ratovitsky, T., Davenport, F., Nordstedt, C., Seeger, M., Hardy, J., Levey, A. I., Gandy, S. E., Jenkins, N. A., Copeland, N. G., Price, D. L., and Sisodia, S. S. (1996) Neuron 17, 181-190). Here we show that the CTF and NTF of PS-1 bind to each other. Fractionating proteins from 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid-extracted membrane preparations by velocity sedimentation reveal a high molecular mass SDS and Triton X-100-sensitive complex of approximately 100-150 kDa. To prove if both proteolytic fragments of PS-1 are bound to the same complex, we performed co-immunoprecipitations using multiple antibodies specific to the CTF and NTF of PS-1. These experiments revealed that both fragments of PS-1 occur as a tightly bound non-covalent complex. Upon overexpression, unclipped wild type PS-1 sediments at a lower molecular weight in glycerol velocity gradients than the endogenous fragments. In contrast, the non-cleavable, FAD-associated PS-1 Deltaexon 9 sediments at a molecular weight similar to that observed for the endogenous proteolytic fragments. This result may indicate that the Deltaexon 9 mutation generates a mutant protein that exhibits biophysical properties similar to the naturally occurring PS-1 fragments. This could explain the surprising finding that the Deltaexon 9 mutation is functionally active, although it cannot be proteolytically processed (Baumeister, R., Leimer, U., Zweckbronner, I., Jakubek, C., Grünberg, J., and Haass, C. (1997) Genes & Function 1, 149-159; Levitan, D., Doyle, T., Brousseau, D., Lee, M., Thinakaran, G., Slunt, H., Sisodia, S., and Greenwald, I. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 14940-14944). Formation of a high molecular weight complex of PS-1 composed of both endogenous PS-1 fragments may also explain the recent finding that FAD-associated mutations within the N-terminal portion of PS-1 result in the hyperaccumulation not only of the NTF but also of the CTF (Lee, M. K., Borchelt, D. R., Kim, G., Thinakaran, G., Slunt, H. H., Ratovitski, T., Martin, L. J., Kittur, A., Gandy, S., Levey, A. I., Jenkins, N., Copeland, N., Price, D. L., and Sisodia, S. S. (1997) Nat. Med. 3, 756-760). Moreover, these results provide a model to understand the highly regulated expression and processing of PS proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号