首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of Al0.36Ga0.64As p/i/n solar cells with multiple quantum wells (MQW) of GaAs/Al0.36Ga0.64As in the i-region has been investigated at various temperatures, ranging from −10°C to 100°C, and compared with that of conventional solar cells composed of either the quantum well material (GaAs) or the barrier material (Al0.36Ga0.64As) alone. The dark currents of the MQW cells were found to lie between those of the conventional cells. The increase of dark current with temperature was accompanied by a slight decrease of the diode ideality factor. A linear dependence of open-circuit voltage (Voc) on temperature was observed for all cells when illuminated with a 100W halogen lamp. Voc for the MQW cells was found to be independent of the number of wells, lying between the Voc's for the two conventional cells. The MQW cells exhibited performance improvement with temperature when compared to the conventional cells and there was a significant enhancement in the short-circuit current with temperature of those MQW cells that exhibited poorer performance at lower temperatures. Theoretical calculations have quantified the contribution of the tunneling current component to the total observed photocurrent at the various temperatures examined. It was found that tunneling currents are present at all temperatures and can be the dominant component in MQW cells of thinner wells at low temperatures. These results suggest that GaAs/Al0.36Ga0.64As MQW structures, of good-quality material, when processed as conventional solar cells with antireflective coatings should deliver more output power under intense illumination than conventional solar cells composed of the quantum well material alone.  相似文献   

2.
A simple graphical method is used to establish that the (AlxGa1−x)0.65In0.35As semiconductor alloy provides the range of energy-band gaps required to both maximize power conversion efficiency and achieve current-matching for two-terminal, multijunction solar cells. Within this framework, the development needs of a three junction, monolithic solar cell with lattice-matched subcells and a strain-relieved GayIn1−yAs/GaAs pseudo-substrate are discussed. The theoretical limiting efficiency of the proposed design is approximately 47.2% at 1 sun (AM 1.5 spectrum).  相似文献   

3.
An Al0.3Ga0.7As/GaAs tandem solar cell was fabricated in a commercial reactor which has been specially modified for dual operation of both atomic layer epitaxy (ALE) and metalorganic chemical vapor deposition (MOCVD) growth modes. The p-type and n-type dopants were carbon and silicon, respectively, and the required doping concentrations were achieved by optimizing growth conditions such as V/III ratio (mole ratio of group V atoms to group III atoms), exposure times to reactant gases, and growth temperatures. The current-voltage (I–V) characteristics indicate that, up to 53 Suns, the tunnel junction does not seem to result in any appreciable deterioration in the multijunction solar cell's performance. The measured efficiency increases with increasing solar concentration up to a point where a region of negative resistance starts to appear in the I–V characteristics.  相似文献   

4.
High efficiency AlxGa1−xAs/GaAs heteroface solar cells have been fabricated by an improved multi-wafer squeezing graphite boat liquid phase epitaxy (LPE) technique, which enables simultaneous growth of twenty 2.3 × 2.3cm2 epilayers in one run. A total area conversion efficiency of 17.33% is exhibited (1sun, AMO, 2.0 × 2.0cm2). The shallow junction cell shows more resistance to 1 MeV electron radiation than the deep one. After isochronal or isothermal annealing the density and the number of deep level traps induced by irradiation are reduced effectively for the solar cells with deep junction and bombardment under high electron fluences.  相似文献   

5.
The investigation of AlxGa1−xAs/GaAs solar cells is carried out by means of both metalorganic chemical vapor deposition (MOCVD) and liquid-phase epitaxial (LPE) technique. The measurements of illuminated IV characteristics, dark IV characteristics and quantum efficiencies were performed for the GaAs solar cells made in author's laboratory. The measuring results revealed that the quality of materials in GaAs solar cell's structures is the key factor for getting high-efficient GaAs solar cells, but the effect of post-growth technology on the performances of GaAs solar cells is also very strong. The 21.95% (AM0, 2×27 cm2, 25°C) high conversion efficiency in a typical GaAs solar cell has been achieved owing to improving the quality of materials as well as optimizing the post-growth technology of devices.  相似文献   

6.
J.V. Dave  Norman Braslau   《Solar Energy》1976,18(3):215-223
Representative results of the numerical simulation of responses (viz. photocurrent and optimum power output as well as efficiency) of the conventional and violet Si cells and of the Ga1−xAlxAs---GaAs and GaAs cells are presented as a function of the solar zenith angle for seven different models of the terrestrial atmosphere. The atmospheric models used vary from an aerosol-free and cloud-free model with gaseous absorption to several models with moderately thick stratus cloud layer and high concentrations of aerosols. This study, restricted to horizontally situated solar cells, illustrates the manner in which characteristics are significantly affected by position of the sun, turbidity and cloudiness of the atmosphere, as well as reflectivity of the underlying surface.  相似文献   

7.
We designed a model of InxGa1−xN tandem structure made of N successive p–n junctions going from two junctions for the less sophisticated structure to six junctions for the most sophisticated. We simulated the photocurrent density and the open-circuit voltage of each structure under AM 1.5 illumination in goal to optimize the number of successive junctions forming one structure.For each value of N, we assumed that each junction absorbs the photons that are not absorbed by the preceding one. From the repartition of photons in the solar spectrum and starting from the energy gap of GaN, we fixed the gap of each junction that gives the same amount of photocurrent density in the structure. Then we calculated the current density accurately and optimized the thicknesses of p and n layers of each junction to make it give the same output current density. The evaluation of ni: the intrinsic concentration permitted to calculate the saturation current density and the open-circuit voltage of each junction. Assuming an overall fill factor of 80%, we divided the output peak power by the incident solar power and obtained the efficiency of each structure.The numerical values for InxGa1−xN were taken from the relevant literature. The calculated efficiency goes from 27.49% for the two-junction tandem structure to 40.35% for a six-junction structure. The six-junction InxGa1−xN tandem structure has an open-circuit voltage of about 5.34 V and a short circuit current density of 9.1 mA/cm2.  相似文献   

8.
Multi-quantum well GaAs/In0.19Ga0.81As solar cells have been measured under low concentration levels (1–10 suns) of AM1.5 illumination. An efficiency of 22% has been obtained at a ratio of 4 suns as opposed to 18% under 1 sun AM1.5 conditions. We explain the improvements in conversion efficiency in terms of an enhancement in minority-carrier lifetime under concentration. Even when the concentration ratio is low, the high-injection regime can be achieved since the carrier concentration in the intrinsic layer is very low. The existence of a high concentration of defects at 0.36 eV below the conduction band in the base layer has been observed by the DLTS analysis. Enhancement of the minority-carrier lifetime under concentration is thought to be due to filling of recombination centers by the injection minority carriers.  相似文献   

9.
New designs of multi-layer graded band gap solar cell structures were experimentally tested using well-understood AlxGa(1−x)As materials grown by the MOVPE technique. Laboratory scale devices (0.5 mm diameter) were processed and measured for their performance as solar cells. Both Voc (1110 mV) and fill factors (83%) for the best devices have shown drastic improvements over existing cells and the short-circuit current densities measured are in the range (10–20) mA cm−2 .  相似文献   

10.
The conventional process for back side passivation with full face Al screen printing layer is not suitable for very thin multicrystalline (mc-Si) solar cells and approaches to new technological processes are searched for. More investigations have been concentrated on local aluminum contacts and passivation coatings with different layers on mc-Si wafers. The aim of this work is to prove that (Al2O3)x(TiO2)1−x is one promising candidate to be applied as passivation layer on multicrystalline Si. Investigations were performed on dielectric films of pseudobinary alloy (PBA) (Al2O3)x(TiO2)1−x, prepared by chemical solution deposition known initially as sol–gel method. It was determined that their optical, dielectric and electrophysical properties are suitable for applications of these layers as back side surface passivation for thin multicrystalline silicon cells.  相似文献   

11.
The correlation of the cell performance of wide-gap Cu(In1−xGax)Se2 (CIGS) solar cells with the thickness of highly resistive i-ZnO layers, which are commonly introduced between the buffer layer and the transparent conductive oxide (TCO) layer in CIGS solar cell devices, was studied. It was found that cell parameters, in particular, the fill factor (F.F.) varied with the thickness of the i-ZnO layers and the variation of the F.F. was directly related to cell efficiency. A 16%-efficiency was achieved without use of an anti-reflection coating from wide-gap (Eg1.3 eV) CIGS solar cells by adjusting the deposition conditions of the i-ZnO layers.  相似文献   

12.
This paper reports the preparation of a core-shell nanoporous electrode consisting of an inner TiO2 porous matrix and a thin overlayer of Al2O3, and its application for solid-state dye-sensitized solar cell using p-CuI as hole conductor. Al2O3 overlayer was coated onto TiO2 porous film by the surface sol–gel process. The role of Al2O3 layer thickness on the cell performance was investigated. The solar cells fabricated from Al2O3-coated electrodes showed superior performance to the bare TiO2 electrode. Under illumination of AM 1.5 simulated sunlight (89 mW/cm2), a ca. 0.19 nm Al2O3 overlayer increased the photo-to-electric conversion efficiency from 1.94% to 2.59%.  相似文献   

13.
In this paper numerical simulation has been used to predict the effect of the thickness and aluminium (Al) mole fraction of an AlGaAs layer, used as a window for a p+–n–n+ GaAs solar cell under AM0 illumination and exposed to 1 MeV electron irradiation. Such solar cells are used in satellites and undergo severe degradation in their performance due to induced structural defects. The irradiation-induced defects are modelled as energy levels in the energy gap of GaAs. To predict this effect, the spectral response is evaluated for different electron irradiation fluences for two types of cells. In the first a narrow Al0.31Ga0.69As window is a small part of the p+ layer while in the second type the whole window is an AlxGa1?xAs layer with a gradual Al mole fraction. The obtained results show that the AlxGa1?xAs window with a gradual Al mole fraction improves the resistance of the solar cell to electron irradiation especially in the short wavelengths range.  相似文献   

14.
High-quality (1 1 0)/(1 0 1)-oriented epitaxial β-FeSi2 films were fabricated on Si (1 1 1) substrate by the sputtering method. The critical feature was the formation of a high-quality thin β-FeSi2 template buffer layer on Si (1 1 1) substrate at low temperature. It was demonstrated that the template is very important for the epitaxial growth of thick β-FeSi2 films and for the blocking of Fe diffusion into the Si at the β-FeSi2/Si interface. Hall effect measurements for β-FeSi2 films showed n-type conductivity, with residual electron concentration around 2.0 × 1017 cm−3 and mobility of 50–400 cm2/V s. A prototype thin-film solar cell was fabricated by depositing n-β-FeSi2 on p-Si (1 1 1). Under 100 mW/cm2 sunlight, an energy conversion efficiency of 3.7%, with an open-circuit voltage of 0.45 V, a short-circuit current density of 14.8 mA/cm2 and a fill factor of 0.55, was obtained.  相似文献   

15.
The diffusional permeability of I3 ion in acetonitrile in free standing TiO2 membrane with a porosity of 55% was examined. The apparent diffusion coefficient, Dapp at 25°C of the ion was found to be 3.4×10−6 cm2 −1, an order of magnitude smaller than the free diffusion at the same temperature. The temperature dependency of Dapp was measured in the range 0–30°C and analysed in terms of the Walden product. The diffusional activation energy was found to be 13.5 kJ/mol. The parameters of interest for the efficiency of mesoscopic wet solar cells are discussed. A back of an envelope calculation shows that although the obstructed diffusion coefficient of the I3 ion was an order of magnitude smaller than the free diffusion the diffusional flux is still sufficient to meet a current density of 50 mA cm−2. At incident photon flux of 1 kW m−2 and at a photopotential of 0.6 V this would correspond to a solar energy efficiency of approximately 30%.  相似文献   

16.
A possibility of semiconductor-sensitized thin film solar cells have been proposed. Nanocrystalline In2S3-modified In2O3 electrodes were prepared with sulfidation of In2O3 thin film electrodes under H2S atmosphere. The band gap (Eg) of In2S3 estimated from the onset of the absorption spectrum was approximately 2.0 eV. The photovoltaic properties of a photoelectrochemical solar cell based on In2S3/In2O3 thin film electrodes and I/I3 redox electrolytes were investigated. This photoelectrochemical cell could convert visible light of 400–700 nm to electron. A highly efficient incident photon-to-electron conversion efficiency (IPCE) of 33% was obtained at 410 nm. The solar energy conversion efficiency, η, under AM 1.5 (100 mW cm−2) was 0.31% with a short-circuit photocurrent density (Jsc) of 3.10 mA cm−2, a open-circuit photovoltage (Voc) of 0.26 V, and a fill factor ( ff ) of 0.38.  相似文献   

17.
The ZnSe/CuGaSe2 heterojunctions were fabricated by flash evaporation technique of CuGaSe2 onto the (110) surface of ZnSe crystals. CuGaSe2 layers had thickness 2–4 μm and showed a hole concentration up to (1.5–18.0)×1018 cm−3 and mobility μ4–24 cm2 V−1 s−1 at 300 K. The charge carrier concentration in ZnSe crystals at 300 K was n=5.6×1016 cm−3 and their mobility μ=300 cm2 V−1 s−1. The investigated ZnSe/CuGaSe2 heterojunctions have at the interface an intermediate layer with a thickness of 450–750 Å and a linear graded band gap as well as an i-ZnSe compensated layer with a thickness of 1–2 μm and resistivity ρ108–109 Ω cm. The i-ZnSe layer is highly compensated due to the presence of Cu acceptor impurities. In this layer the Fermi level position EcF0690 meV and a trap level position EtF017 meV were determined. The total trap concentration in the i-ZnSe layer is Nt5×1014 cm−3. The mean free path of excited charge carriers in the graded band gap region was calculated as λ55 Å. On the basis of experimental data analysis of electrophysical properties of both ZnSe/CuGaSe2 heterojunctions and constituent materials the energetic band diagram of the investigated heterostructures is proposed. The current transport mechanism through ZnSe/CuGaSe2 heterojunctions is consequently elucidated.  相似文献   

18.
Room temperature measurements were made of electrical conductivity (σ), Hall coefficient (RH) and Seebeck coefficient (α) on filamentary samples of p-type CuInSe2 and CuIn1−xGaxSe2 with x0.3, cut from vertically grown Bridgman ingots. Analysis of the results was done on a two-carrier basis, due to the higher ratio of electron to hole mobility (b) in these materials compared to elemental semiconductors. This treatment yielded a preferred b-value of 5 and to lower calculated hole concentrations than (RHe)−1 and higher hole mobilities than RHσ, based on a one-carrier interpretation. This effect was particularly marked in p-type samples with a hole concentration below 1017 cm−3, where even a few percent of minority electrons can play an important role.  相似文献   

19.
Analysis of the composition, strain-relaxation, layer-tilt, and the crystalline quality of InyGa1−yAs/InP1−xAsx thermophotovoltaic (TPV) diodes grown by metal-organic vapor phase epitaxy (MOVPE) is demonstrated using triple-axis X-ray reciprocal space mapping techniques. In0.53Ga0.47As (Egap=0.74 eV) n/p junction diodes are grown lattice matched (LM) to InP substrates and lattice-mismatched (LMM) In0.67Ga0.33As (Egap=0.6 eV) TPV diodes are grown on three-step InP1−xAsx (0<x<0.32) buffer layers on InP substrates. X-ray reciprocal space maps about the symmetric (4 0 0) and asymmetric (5 3 3) reciprocal lattice points (RELPs) determine the in-plane and out-of-plane lattice parameters and strain of the InyGa1−yAs TPV active layer and underlying InP1−xAsx buffers. Triple-axis X-ray rocking curves about the LMM In0.67Ga0.33As RELP show an order of magnitude increase of its full-width at half-maximum (FWHM) compared to that from the LM In0.53Ga0.47As (250 vs. 30 arcsec). Despite the significant RELP broadening, the photovoltaic figure of merits show that the electronic quality of the LMM In0.67Ga0.33As approaches that of the LM diode material. This indicates that misfit-related crystalline imperfections are not dominating the photovoltaic response of the optimized LMM In0.67Ga0.33As material compared with the intrinsic recombination processes and/or recombination through native point defects, which would be present in both LMM and LM diode material. However, additional RELP broadening in non-optimized LMM In0.67Ga0.33As n/p junction diodes does correspond to significant degradation of TPV diode open-circuit voltage and minority carrier lifetime demonstrating that there is correlation between X-ray FWHM and the electronic performance of the LMM TPV diodes.  相似文献   

20.
The development of a low-cost substrate is one of the major technological challenges for crystalline Si thin-film solar cells. Zirconium silicate (ZrSiO4) ceramics is a material which can meet the demanding physical requirements as well as the cost goals. Thin microcrystalline Si films were deposited by atmospheric pressure CVD on ZrSiO4-based ceramic substrates coated with barrier layers. The Si film was transferred into a multicrystalline grain structure by zone-melting recrystallization (ZMR). Film growth was analyzed in situ and correlated with substrate and barrier layer properties. Thin-film solar cells were fabricated from selected coarse-grained films. The best solar cell achieved an efficiency of 8.3% with a short circuit current density of 26.7 mA/cm2. The effective diffusion length obtained from internal quantum efficiency measurements was about 25 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号