首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 158 毫秒
1.
本文针对锌镍单液流电池多孔正极,基于格子玻尔兹曼方法从孔隙尺度对多孔正极内的流动传质及化学反应过程进行了模拟,获得了多孔电极孔隙内部电解液渗流速度场,浓度场和电流密度变化。从孔隙内渗流与传质的角度分析了不同充电电流、电解液流速和多孔电极孔隙率对电极电化学反应的影响。  相似文献   

2.
膜加湿器是保证质子交换膜燃料电池(PEMFC)正常高效运行的重要组成部分.以燃料电池的板式膜加湿器为研究对象,根据热质交换原理对膜加湿器的传热传质过程进行了理论计算,分析了空气质量流量、膜内加湿侧进口温度和膜内加湿侧进口湿度对传热传质过程的影响.在传热方面:当空气质量流量不同时,随着膜内加湿侧进口温度的变化,膜内的热流量变化趋势不一致;当膜内加湿侧进口相对湿度为95%时,随着空气质量流量的变化,膜内热流量变化不大.在传质方面:当加湿侧进口相对湿度不变时,膜中水传输速率随着空气质量流量的增大而减小;当空气质量流量不变时,膜中水传输速率随着加湿侧进口相对湿度的增大而增大.  相似文献   

3.
针对质子交换膜燃料电池(PEMFC)船舶适用性问题,建立船体简谐振动条件下三维单流道PEMFC计算模型,并以计算流体力学为主要研究方法,仿真研究PEMFC在船体简谐振动情况下的动态性能变化,并通过组分运输过程以及电化学反应对振动条件下PEMFC的动态响应进行内在机制解析。结果表明:简谐振动下PEMFC在经过初始阶段响应后,呈周期性输出规律;船体振动会显著影响PEMFC内部组分传热传质,导致电化学反应无法正常进行,PEMFC性能出现衰变趋势,甚至造成电池饥饿现象;当振幅不变时,振动频率的增大会加剧该现象。  相似文献   

4.
针对常规流场质子交换膜燃料电池提出了三维非等温数学模型。模型考虑了电化学反应动力学以及反应气体在流道和多孔介质内的流动和传递过程,详细研究了水在质子膜内的电渗和扩散作用。计算结果表明,反应气体传质的限制和质子膜内的水含量直接决定了电极局部电流密度的分布和电池输出性能;在电流密度大于0.3~0.4A/cm2时开始出现水从阳极到阴极侧的净迁移;高电流密度时膜厚度方向存在很大的温度梯度,这对膜内传递过程有较大影响。  相似文献   

5.
建立了直接甲醇燃料电池垂直流道方向电池单元的二维稳态数学模型,考虑了电化学动力学、多组分传递和甲醇渗透影响.计算了流道布置密度、扩散层、催化层和质子交换膜等组件尺度对电池内物料传质特性、化学反应组织和电池输出性能的影响.研究发现,增加流道布置密度、增加催化层厚度能有效提高电极反应均匀性和电池性能.其中催化层和质子膜的厚度影响最为显著,在该文研究范围内分别可提高电池的平均电流密度131.0%和17.8%.而扩散层和质子交换膜厚度都存在一个最佳值,需要与以上流场板设计尺寸和膜电极尺寸匹配.  相似文献   

6.
固体氧化物燃料电池三维模拟与性能分析   总被引:1,自引:0,他引:1  
建立了平板式阳极支撑固体氧化物燃料电池的三维数学模型,通过耦合电化学动力学和流体动力学模拟了电池的传热传质等传输现象。采用有限容积法计算了质量、动量、组分与能量守恒方程。研究给出了同向流与反向流情况下电流度密度、电压与功率密度分布。结果显示在同向流情况下,电池的最大功率密度较大,温度分布较均匀合理。进一步研究表明多孔电极结构参数(孔隙率、曲折因子与孔径尺寸)对电池性能有十分重要的影响。比较计算的极化性能与文献的实验数据,结果表明两者吻合的较好。  相似文献   

7.
为详细解析质子交换膜燃料电池(PEMFC)零下温度启动过程,建立了电池冷启动时多场耦合过程的介孔尺度数值模型。几何模型基于随机网格法(SGM)重建的催化层介孔结构,数学模型描述了物质传输、电荷传输、电化学反应和汽-冰相变过程。数值分析了电池冷启动过程中催化层内冰的生成和演化,重点探讨了冰的生成及形貌对电池性能的影响,推导出电化学活性反应面积与结冰量的关系式。  相似文献   

8.
在作者已开发的SOFC单电池结构及其阳极上甲烷重整的有效动力学模型的基础上,构建了直接内部重整的平板式多孔电极支撑(PES)固体氧化物燃料电池(SOFC)的全三维数学模型,根据模型分析了SOFC在不同进气模式顺流和逆流工况下,单电池内的流动、传热传质、化学、电化学和电流场等物理过程,给出了单电池内气体组分、温度、电势、电流密度等参数的空间分布。分析结果表明:进气方式对于电池的性能有一定的影响,与顺流相比在相同工况下燃用同样的燃料,采用逆流进气口电池的运行性能虽然略有提高,但是电池阳极内存在较高温度的热点,并且热点的位置不确定。  相似文献   

9.
建立了一个具有蛇形通道,采用Nafion117膜单体质子交换膜燃料电池的三维数学模型,该模型同时考虑了流动、传热、传质、电化学动力学和多组分传输现象。通过求解传输方程组,并耦合电化学动力学方程,获得了电池的极化性能曲线和电池内部的反应物浓度、温度、速度分布。计算结果表明,增加电极孔隙率、提高电池运行温度和压力有助于改善电池性能。估算的极化性能与献中的实验数据基本符合。分析了运行条件对电池性能的影响。  相似文献   

10.
含湿毛细多孔介质湿区相变传热传质干燥三方程模型   总被引:4,自引:0,他引:4  
含湿毛细多孔介质的干燥过程是复杂的相变传热传质过程。该过程涉及渗流、扩散、传热、毛细效应和相变等机理,建立了含湿毛细多孔介质湿区干燥过程相变传热传质数学模型,采用全隐式有限差分方法对一维模型进行了数值计算。得到了含湿毛细多孔介质湿区干燥过程中的液相饱和度、温度和混合气体压力的变化,并分析了该计算结果。  相似文献   

11.
The efficiency and lifetime of a proton exchange membrane fuel cell (PEMFC) system is critically affected by the humidity of incoming gas which should be maintained properly for normal operating conditions. But the experimental characteristics of the humidifier are rarely reported. Water transport through the hydrophilic membrane is a coupled phenomenon of heat and mass transport. In this study, a laboratory scale test bench is designed to investigate the characteristics of water transport through the hydrophilic membrane. The mass transfer capability of the hydrophilic membrane is evaluated over various flow rates, temperature, pressure, and flow arrangements. In the experiment, the test bench is submerged in a constant temperature bath in order to isolate the effect of temperature variation between dry air and humid air. The results show the water transport of the hydrophilic membrane is significantly affected by operating temperature and operating pressure. Additionally, the flow arrangement demonstrates a minor effect but it should be considered along with the heat transfer effect.  相似文献   

12.
A two-dimensional, steady state model for proton exchange membrane fuel cell (PEMFC) is presented. The model is used to describe the effect operation conditions (current density, pressure and water content) on the water transport, ohmic resistance and water distribution in the membrane and performance of PEMFC. This model considers the transport of species and water along the porous media: gas diffusion layers (GDL) anode and cathode, and the membrane of PEMFC fuel cell.  相似文献   

13.
Heat transfer in a PEMFC flow channel   总被引:2,自引:0,他引:2  
A numerical method was applied to the heat transfer performance in the flow channel for a proton exchange membrane fuel cell (PEMFC) using the finite element method (FEM). The heat transfer enhancement has been analyzed by transversely installing a baffle plate and a rectangular cylinder to manage flow pattern in the flow channel of the fuel cell. Case studies include baffle plates (gap ratios from 00.05 to 0.2) and the rectangular cylinder (width-to-height ratios from 0.66 to 1.66 with a constant gap ratio of 0.2; various gap ratios from 0.05 to 0.3 with a constant width-to-height ratio 1.0) at constant Reynolds number. The results show that the transverse installation of a baffle plate and a rectangular cylinder in the flow channel can effectively enhance the local heat transfer performance of a PEMFC. The installation of a rectangular cylinder has a better effective heat transfer performance than a baffle plate; the larger the width of the cylinder is the better effective heat transfer performance becomes.  相似文献   

14.
The aim of this work is to present a two-dimensional transient model, of heat and mass transfer in a proton exchange membrane fuel cell (PEMFC). The model includes various conservation equations such as mass (hydrogen, oxygen, water concentration), Momentum and energy equations this model is combined with the electrochemical model.  相似文献   

15.
Sloping baffle plates are installed numerically in the flow channel of proton exchange membrane fuel cell (PEMFC) to promote the mass transport in the porous electrode and the fuel cell performance. The sloping angle of baffle plate on the mass transport and performance of PEMFC are investigated and optimized. The numerical results show that the sloping angle of baffle plate influences the velocity distribution, flow resistance in the flow channel, and the intensity of mass transport between the channel and porous electrode. Larger sloping angle increases the velocity in the vertical direction which brings stronger squeeze effect between the channel and porous electrode, but it also reduces the squeeze area and increases the flow resistance. An optimization for the sloping angle of baffle plate is carried out. The baffle plate with the sloping angle of 45° shows the best performance in PEMFC net power considering the pumping power caused by the pressure loss. The effect of the baffle plate number is also investigated and optimized. The fuel cell current density increases with the baffle plate number, but the increment rate is decreased. The pumping power increases almost linearly with the baffle plate number. The PEMFC with six sloping baffle plates installed in the channel is found to be optimal in terms of the net power.  相似文献   

16.
This study performs numerical simulations to investigate the effects of buoyancy on the gas flow characteristics, temperature distribution, electrochemical reaction efficiency and electrical performance of a proton exchange membrane fuel cell (PEMFC) with a novel wave-like gas flow channel design. In general, the simulation results show that compared to the straight geometry of a conventional gas flow channel, the wave-like configuration enhances the transport through the porous layer and improves the temperature distribution within the channel. As a result, the PEMFC has an improved fuel utilization efficiency and an enhanced heat transfer performance. It is found that the buoyancy effect increases the velocity of the reactant fuel gases in both the vertical and the horizontal directions. This increases the rate at which the oxygen gas is consumed in the fuel cell but improves the electrical performance of the PEMFC. The results show that compared to the conventional straight gas flow channel, the wave-like gas flow channel increases the output voltage and improves the maximum power density by approximately 39.5%.  相似文献   

17.
A 3D numerical model of proton exchange membrane fuel cell (PEMFC) with the installation of baffle plates is developed. The majority of the conservation equations and physical parameters are implemented through the user defined functions (UDFs) in the FLUENT software. The characteristics of mass transport and performance of PEMFC are investigated. The results reveal that the baffle plate can enhance the mass transport efficiency and the performance of PEMFC. The baffle plate installed in the PEMFC flow channel increases the local gas velocity, which can promote the reactant gas transport and the liquid water removal in the porous electrode. As a result, the reactant gas concentration is larger in the porous electrode, which enhances the fuel cell performance for decreasing the over-potential of concentration. The fuel cell output power increases with the blockage ratio of the baffle plate. Considering the extra pumping power resulted from pressure loss caused by the baffle plate, the fuel cell with the blockage ratio of 0.8 is found to perform best in terms of the fuel cell net power generation. The fuel cell performance increases first with the baffle plate number, due to the better reactant distribution and water management, but decreases when the baffle plate number is too large, due to the excessive blockage for the reactant gas transport to the channel downstream. The PEMFC investigated with 5 baffle plates in the channel is found to be optimal. A channel design to achieve gradually increasing blockage ratios is also proposed, which exhibits better cell performance than the design with even blockage ratios.  相似文献   

18.
In the present work, a numerical study of heat and mass transfer within the membrane of a proton exchange membrane fuel cell is presented. The electrolyte membrane is considered an isotropic porous medium and ideal insulator for electrons and reactants. The adopted model in this study is based on the assumption of single-phase and multi-spices flow, supposed two-dimensional and unsteady. For the water transport, the major considered forces are; the convective force, resulting from the pressure gradient, the osmotic force, due to the concentration gradient and the electric force caused by the proton migration from the anode to the cathode. Based on a one-dimensional model, found in the literature, a transient two-dimensional one was proposed. The set of governing equations, written in velocity–pressure formulation, is solved by the implicit finite difference method. An alternating Direct Implicit scheme was used for the calculation. The numerical resolution gives the time- and space-dependent temperature and water concentration. The main focus lies on the influence of different cases of boundary conditions on water concentration and heat transfer variation with the intention of testing the reliability of the proposed computational fluid dynamic (CFD) code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号