首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this research work was to investigate tribological properties of low-friction DLC coatings when operating in helium atmosphere. Two commercial DLC coatings (a-C:H and Me-C:H) were included in the investigation and compared to reference PTFE-based coatings, normally used on components operating in helium. Coatings were deposited on hardened 100Cr6 bearing steel discs and tested against uncoated steel balls in low-load pin-on-disc contact configuration. Investigation was focused on the effect of substrate roughness (R a ?=?0.05?C0.2???m) and contact conditions, including contact pressure (150?C350?MPa) and sliding speed (0.2?C0.4?m/s) on the coefficient of friction of DLC coatings operating in helium. Results of this investigation show that for low-load sliding contact DLC coatings provide low friction in helium atmosphere, similar to soft PTFE-based coatings. At the same time DLC coatings investigated were found to substantially reduce wear of the coated surface. However, while the wear of the coated part has been more or less eliminated, application of DLC coating prolongs running-in and increases wear of the steel counter-part. Furthermore, also in helium atmosphere tribolgical behaviour of DLC coatings showed dependence on the coating type and contact conditions.  相似文献   

2.
F. Platon  P. Fournier  S. Rouxel 《Wear》2001,250(1-12):227-236
The goal of the study carried out in the laboratory was to quantify the wear and the friction of two materials used for the manufacturing of hip prostheses. Tests used had to obtain in a short time the tribological behaviour laws of the materials. Tests on a hip simulator have been excluded because their cost and their duration were too high for a program of preliminary development of new materials.

To amplify wear phenomena, dry friction tests were carried out for two configurations: ball-on-disc and pin-on-disc. The influence of the contact pressure at constant sliding velocity on the wear of materials has been clearly shown.

Results obtained with several different tested materials (stainless steel/UHMWPE, stainless steel+DLC coating/UHMWPE, stainless steel+DLC coating/stainless steel+DLC coating, titanium alloy+DLC coating/UHMWPE, titanium alloy+DLC coating/titanium alloy+DLC coating, zirconium dioxide/UHMWPE, alumina/UHMWPE, alumina/alumina) have shown the superiority of DLC coatings. Promising results obtained during this study are in the validation stage on a hip simulator.  相似文献   


3.
Diamond‐like carbon (DLC) is an essential element of friction reduction made major by the desire to reduce energy consumption for environmental and economic reasons. The contribution of the DLC depends on its tribological behaviour. The analysis of the wear of DLC in DLC/steel contact is important because of the high exposure to the wear of coated parts and the low degree of mastery of behaviour of DLC in the lubricants studied and optimised for steel. In this study, we have analysed the tribological behaviour of hydrogenated DLC (a‐C:H) and nonhydrogenated DLC (ta‐C) under various lubrication conditions. Oils with and without additives were used. The results show that the wear of a‐C:H is considerably lower than that of ta‐C in base oils, and in the investigated oil with additives, the wear of ta‐C is substantially reduced. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

Increased concerns about environmental damage caused by many lubricants, has created a growing worldwide trend of promoting new environmentally friendly lubricants. The tribological characteristics of aloe mucilage as a kind of original biolubricant have been investigated in the present work. The experimental results indicate that the variation of the film thickness of aloe mucilage is not the same as that in traditional elastohydrodynamic lubrication, but conforms to the lubrication regime of thin film lubrication under the present experimental conditions. The coefficient of friction (COF) of the aloe mucilage among different tribological pairs is significantly decreased by the increase in velocity, while there is little variation when the normal load is increased. The COF of aloe mucilage between WC and DLC surfaces is very small with a value of 0˙04, and the wear resistance of the aloe mucilage between WC/DLC is better than that between WC/Si and WC/steel.  相似文献   

5.
Abstract

The tribological behaviour of stainless steel (SUS 440C) relative to that of diamond-like carbon (DLC) was investigated in terms of tribometer input energy. The DLC was prepared on tungsten carbide (WC) substrates using radio frequency plasma chemical vapour deposition with benzene (C6H6) as a gas source. The stainless steel ball, as the counterpart, was tribotested. The input energy was calculated using the applied load, friction coefficient and sliding distance obtained from each tribotest. The wear loss of the ball increased as the sliding distance increased, whereas wear loss of the DLC was not directly observed. During evaluation of the input energy, the wear rate of the stainless steel ball decreased as the input energy increased. We propose a method for evaluating tribological properties using the input energy and discuss the wear behaviour of the stainless steel based on the input energy.  相似文献   

6.
Diamond-like carbon (DLC) coatings are beginning to be used on machine components parts because of their excellent friction and wear resistance properties. It is hence important to be able to formulate lubricants able to work effectively with these coatings. This requires knowledge of how the various surface-reactive additives generally employed in lubricants behave with DLCs. This paper compares the behaviour of seven types of DLC, a-C, a-C:H, a-C:H:W, a-C:H:WC, Si-DLC, ta-C, ta-C:H, lubricated with molybdenum dialkyldithiocarbamate (MoDTC) solution. It is found that a-C and a-C:H:WC give lower boundary friction than the other types of DLC. MoDTC improves the wear resistance of DLC/DLC contacts but appears to greatly degrade the wear resistance properties of some DLCs in DLC/steel contacts, even though Mo-derived tribofilms form on all DLCs.  相似文献   

7.
Jianwei Qi  Liping Wang  Fengyuan Yan  Qunji Xue 《Wear》2013,297(1-2):972-985
Combination of solid and liquid lubricants to meet emission or environmental requirements of future tribological systems while providing the levels of desired friction and wear performance have received considerable research attention in the near term. The aim of the present work was to investigate the tribological behavior of oil-lubricated (PAO, PFPE, SO, IL and MAC) DLC coated surfaces under the conditions without and with sand-dust particles. The effects of applied load, frequency, and sand-dust particles on the tribological performance of DLC coating were systemically studied. The analysis results showed that solid–liquid lubricating coatings including SO and IL exhibited excellent anti-friction (~0.026) but relative poor wear-resistance performances under the conditions without and with sand-dust environments. But for PFPE and PAO, they demonstrated the worst tribological behaviors with high friction coefficient and wear rates. The added sand-dust particles lead to the wear rates to the one order of magnitude large than that without sand-dust conditions for all the selected liquid lubricants. The viscosity, contact angle and work of adhesion played an important part in affecting the tribological performances. The lubrication regimes in Stribeck curve for the five kinds of liquid lubricants were affected obviously by the sand-dust particles in different way. The formed transfer films on the coating surface and pin have much influence on the tribological behavior and the transition between lubrication regimes.  相似文献   

8.
为研究轴表面类金刚石(DLC)涂层对滑动轴承承载性能的影响,利用滑动轴承实验台测试轴线对中及倾斜工况下灰铸铁、铝合金和聚酰亚胺(PI)涂层轴承分别与40Cr钢轴和DLC涂层轴配合时的轴心轨迹和极限载荷,并测试3种材料与40Cr钢和DLC涂层的摩擦因数。结果表明:相较与40Cr钢配合,灰铸铁和铝合金与DLC涂层配合时摩擦因数减小,重载下轴承偏心率减小,轴线对中工况下灰铸铁轴承的极限载荷超过10 MPa,铝合金轴承的极限载荷增大到7.8 MPa(增大1.1倍),轴线倾斜工况下轴承抱死失效时边缘变形增大;但重载下PI涂层与DLC涂层配合时摩擦因数增大,轴线对中工况下轴承极限载荷减小至3.6 MPa(减小44%),轴线倾斜工况下轴承抱死失效时边缘变形减小。  相似文献   

9.
Cu/h-BN self-lubricating coating was prepared on AISI1045 steel by electrospark deposition. The friction coefficient and wear rates were measured using the ball-on-disk method, and the tribological behaviors were discussed. Results showed that the friction coefficient decreased with an increase in sliding speed and load. The wear rate decreased with an increase in sliding speed and increased with an increase in load. The self-lubricating coating exhibited much lower friction coefficient and wear rate than the uncoated mild steel under the test condition. SEM micrographs show that the main wear mechanisms of the self-lubricating coating are abrasive wear and fatigue wear.  相似文献   

10.
K.Y. Li  Z.F. Zhou  I. Bello  S.T. Lee 《Wear》2005,258(10):1577-1588
Diamond-like carbon (DLC) coatings were prepared on AISI 440C steel substrates at room temperature by electron cyclotron resonance chemical vapor deposition (ECR-CVD) process in C2H2/Ar plasma. Using the designed Ti/TiN/TiCN/TiC interfacial transition layers, relatively thick DLC coatings (1-2 μm) were successfully prepared on the steel substrates. The friction and wear performance of the DLC coatings was evaluated by ball-on-disk tribometry using a steel counterbody at various normal loads (1-10 N) and sliding speeds (2-15 cm/s). By optimizing the deposition parameters such as negative bias voltage, DLC coatings with hardness up to 30 GPa and friction coefficients lower than 0.15 against the 100Cr6 steel ball could be obtained. The friction coefficient was maintained for 100,000 cycles (∼2.2 km) of dry sliding in ambient environments. In addition, the specific wear rates of the coatings were found to be extremely low (∼10−8 mm3/Nm); at the same time, the ball wear rates were one order of magnitude lower. The influences of the processing parameters and the sliding conditions were determined, and the frictional behavior of the coatings was discussed. It has been found that higher normal loads or sliding speeds reduced the wear rates of the coatings. Therefore, it is feasible to prepare hard and highly adherent DLC coatings with low friction coefficient and low wear rate on engineering steel substrates by the ECR-CVD process. The excellent tribological performance of DLC coatings enables their industrial applications as wear-resistant solid lubricants on sliding parts.  相似文献   

11.
Use of low friction non-ferrous coatings for engine tribo-components exposed to boundary lubrication is becoming popular in automotive industries. The excellent tribological behaviour of some non-ferrous coatings also reduces dependence on some harmful components of lubricants. In this work, hydrogenated diamond like carbon (HDLC) and chromium nitride (CrN) coatings sliding against cast iron counterbody have been used to study the interaction with friction modifiers (Moly dimer and Moly trimer) and antiwear additive zinc dialkyldithiophosphate (ZDDP) under boundary lubrication condition. The tribological results of the non-ferrous coatings are compared with those of uncoated steel. Tribofilms are formed using a reciprocating pin-on-plate tribometer. The chemical analysis of the tribofilms has been accomplished using X-ray photoelectron spectroscopy (XPS). The XPS analysis shows that the friction modifiers form a low friction tribofilm on the non-ferrous coatings. No antiwear tribofilm derived from ZDDP was observed on the HDLC coating but a stable antiwear tribofilm was found on the CrN coating. Moly dimer together with ZDDP+Base Oil showed the lowest friction coefficient for the CrN coating while Moly trimer along with ZDDP+Base Oil gave the lowest friction for the HDLC coating. This study will investigate the generic differences between the tribofilms formed on the DLC and CrN coatings by two additive-containing oils.  相似文献   

12.
The effect of surface-coated ultrafine powders (UFPs) of serpentine suspended in lubricants on the tribological behaviors of a mated 1045 steel contact was investigated. Through the addition of serpentine UFPs to oil, the wear resistance ability was improved and the friction coefficient was decreased. The addition of 1.5 wt% serpentine to oil is found most efficient in reducing friction and wear. The nano-hardness and the ratio of hardness to modulus of friction surface are observably increased. Such effects can be attributed to the formation of a tribofilm of multi-apertured oxide layer, on which the micrometric alumina particles embedded and serpentine nano-particles adsorbed.  相似文献   

13.
The wear behaviour of hydrogenated diamond like-carbon (DLC) coating in DLC/steel tribological contact in a pin-on-disc model test under lubrication with two diesel fuels is presented in this work. The first diesel fuel was standard EN590 that contained ester-based antiwear additives. In contrast to EN590, the second diesel fuel, called GDK650, did not contain antiwear additives. It was experimentally observed that the antiwear additives are detrimental to the DLC. The effects of load, speed and temperature on the DLC and steel counterbody wear were investigated. Steel counterbody wear volume was found to be not affected by pressure, temperature, speed and lubricant, whereas the DLC-coating revealed correlation between the parameters and wear rate. Regarding the results of the tribological tests under both diesel lubrications, new mathematical wear laws were developed.  相似文献   

14.
M. Kalin  J. Vi?intin 《Wear》2006,261(1):22-31
Diamond-like carbon (DLC) coatings, which can nowadays be applied to many highly loaded mechanical components, sometimes need to operate under lubricated conditions. It is reasonable to expect that in steel/DLC contacts, at least the steel counter body will behave according to conventional lubrication mechanisms and will interact with lubricants and additives in the contact. However, in DLC/DLC contacts, such mechanisms are still unclear. For example, the “inertness” of DLC coatings raises several questions about whether they are able to provide real boundary “lubrication” or whether they are just a “passive” member in these contacts. On the other hand, biodegradable oils, in particular vegetable base oils, possess a good lubricating ability, often much better than mineral or conventional synthetic oils as a result of the large amount of un-saturated and polar components that can promote the lubricity of DLC coatings. Accordingly, in this study, we present the results of experiments under severe boundary-lubrication conditions during reciprocating sliding. We look at the effect of the type of mating surfaces - steel/DLC, DLC/DLC and steel/steel - and the type of oil on the tribological performance of DLC coatings. We compare the wear and friction behaviours of two types of DLC coatings, i.e., a “pure” non-doped a-C:H DLC coating (denoted as a-DLC) and a WC-containing multilayer coating (denoted as W-DLC) tested with a mineral oil and a biodegradable vegetable oil. These oils, which have very different chemical compositions, were used as base oils and also with mild AW and strong EP additives. Among other things, the results confirm the following: (1) coating/coating lubricated contacts can resemble metal-lubrication mechanisms; (2) additives reduce wear in coating/coating contacts by up to 80%; (3) better wear and friction performance are obtained with oils that contain large amounts of polar and un-saturated molecules; (4) a coating/coating combination generally results in less wear than a steel/coating combination.  相似文献   

15.
The presence of hard contaminants in lubrication can lead to the premature failure of rolling bearings. To reduce the negative effect of such contaminants, hard carbon-based coatings (diamond-like carbon; DLC) can be applied to the surfaces of steel bearings. DLC coatings generate a low friction and a high sliding wear resistance to enhance the tribological properties and improve the durability of running components. This work explores the merits of DLC coatings for use in very demanding applications, such as in highly contaminated environments. The wear properties of DLC-coated bearing rollers were evaluated by comparing them with uncoated rollers. The degree of wear found on the coated rollers was serious, especially under relatively high contaminant concentrations. The three-body abrasive wear produced a relatively coarse scoring of the coating surface, which caused the corresponding disc to suffer more damage than the disc running against an uncoated roller under the same operating conditions. The results indicate that supposedly wear-protective coatings cause even more damage to running surfaces once they have been broken up by hard contaminants, and highlight the importance of keeping the bearing coating intact. In practise, it is important to eliminate contaminants from the lubricant of rolling bearings, in particular for bearings with a DLC anti-wear coating.  相似文献   

16.
Whether or not the process of fretting occurs is to a large extent dependent on the coefficient of friction, because the coefficient of friction directly affects the amount of shear stress. As a result, the key factor when it comes to reducing the amount of fretting damage is to reduce the coefficient of friction. Various surface coatings, and especially hard, diamond-like carbon (DLC) coatings, are known to be able to produce surfaces with a low level of friction. Despite some such attempts in the past, which did not result in major improvements, the developments and improvements in DLC coatings in recent years suggest the need for a re-evaluation of these coatings for fretting applications. Another way to reduce the amount of friction in mechanical components is to apply lubricants, and recent studies on the lubrication of DLC coatings suggest that this combination could be very successful in preventing failures under boundary-lubrication conditions. Therefore, in this work we present the results of friction and wear measurements from three types of fretting contacts: steel/steel, steel/DLC and DLC/DLC. Boundary oil-lubrication conditions were investigated and a wide range of displacement amplitudes, i.e., from 25 to 500 μm, were selected to assess the fretting and sliding behaviours. The results show a significant difference between the fretting and sliding regimes. In the fretting regime, the DLC-containing contacts, and especially the self-mated DLC/DLC contacts, performed much better than the steel/steel contacts, and significantly reduced both the wear (a 3–10 times reduction with steel/DLC and DLC/DLC) and the friction (a more-than-two-times reduction with DLC/DLC). In the sliding regime, the lubrication effects governed the tribological performance, making the results for all three material combinations very similar.  相似文献   

17.
The tribological behavior of alternating-layered diamond-like carbon (DLC) films was examined under a variety of humid conditions. Alternating deposited layers with Si-incorporated DLC (Si-DLC) and DLC films were prepared using a hybrid coating system. The residual stress of the alternating-layered films was reduced while the hardness was relatively less dependent on the number of alternating-layered sets. A ball-on-disk type tribological test was carried out under the following humid conditions: dry, 50% and 90% relative humidity. The friction coefficient for higher number of alternating-layered sets decreased with increasing humidity conditions but there was no dependency on the wear rate.  相似文献   

18.
This study concerns the effects of tribochemical interactions at the interface of Si-DLC (silicon-doped diamond-like carbon) film and steel ball in sliding contact on tribological properties of the film. The Si-DLC film was over-coated on pure DLC coating by radio frequency plasma-assisted chemical vapor deposition (r.f. PACVD) with different Si concentration. Friction tests against steel ball using a reciprocating type tribotester were performed in ambient environment. X-Ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES) were used to study the chemical characteristics and elemental composition of the films and mating balls after tests. Results showed a darkgray film consisting of carbon, oxygen and silicon on the worn steel ball surface with different thickness. On the contrary, such film was not observed on the surface of the ball slid against pure DLC coating. The oxidation of Si-DLC surface and steel ball was also found at particular regions of contact area. This demonstrates that tribochemical interactions occurred at the contact area of Si-DLC and steel ball during sliding to form a tribofilm (so called transfer film) on the ball specimen. While the pure DLC coating exhibited high coefficient of friction (∼0.06), the Si-DLC film showed a significant lower coefficient of friction (∼0.022) with the presence of tribofilm on mating ball surface. However, the Si-DLC film possesses a very high wear rate in comparison with the pure DLC. It was found that the tribochemical interactions strongly affected tribological properties of the Si-DLC film in sliding against steel.  相似文献   

19.
Fuel economy and reduction of harmful elements in lubricants are becoming important issues in the automotive industry. An approach to respond to these requirements is the potential use of low friction coatings in engine components exposed to boundary lubrication conditions. Diamond-like-carbon (DLC) coatings present a wide range of tribological behavior, including friction coefficients in ultra-high vacuum below 0.02. The engine oil environment which provides similar favourable air free conditions might lead to such low friction levels.In this work, the friction and wear properties of DLC coatings in boundary lubrication conditions have been investigated as a function of the hydrogen content in the carbon coating. Their interaction with ZDDP which is the exclusive antiwear agent in most automotive lubrication blends and friction-modifier additive MoDTC has been studied. Hydrogenated DLC coatings can be better lubricated in the presence of the friction-modifier additive MoDTC through the formation of MoS2 solid lubricant material than can non-hydrogenated DLC. In contrast, the antiwear additive ZDDP does not significantly affect the wear behavior of DLC coatings. The good tribological performances of the DLC coatings suggest that they can contribute to reduce friction and wear in the engine, and so permit the significant decrease of additive concentration.  相似文献   

20.
The synergetic lubrication effects between diamond-like carbon (DLC) coatings and lubricating oils have draw much attention for the past decades, and promising results have been reported between DLC and biodegradable synthetic ester, which might be a potential solution in energy conservation and environmental protection. However, the challenges lie in that the synthetic ester oils exhibit lower oxidation stability than the hydrocarbon oils and are prone to produce organic acids in the aging process. Thus, investigating the tribological behavior of DLC coating in acidified ester oil is meaningful to the long-term reliability of ester-lubricated DLC contacts. In this article, the friction and wear behavior of DLC–DLC, DLC/steel, and steel–steel contacts in acidic ester oils with different total acid values (TANs) is systematically studied. It was found that acidification of ester oil showed certain beneficial tribological effects for the self-mated steel and DLC contacts but could cause severe wear loss on steel counterparts with a special polished appearance for steel–DLC hybrid contacts. By focusing on the properties of the tribofilm formed on the contact surfaces, a possible tribological mechanism was discussed. Finally, it was proposed that the steel–DLC contacts exhibited low tolerance to organic acids and thus the additives that could dissipate the produced organic acids are a critical component in lubricating oils that were tailored for the steel–DLC contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号