首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of oppositely charged colloidal nanoparticles to build multilayered structures is an approach in thin film science. In this work, uniform spherical nano‐dispersions of gold (ca. 20 nm) and silica (ca. 30 nm) were synthesised with specific volume concentration to achieve colloidal stability. Exploiting the use of self‐assembly, multilayers of these oppositely charged nanoparticles were built using alternate coating with chitosan. Gold nanoparticles have strong optical absorption in visible region of electromagnetic spectrum resulting from its surface plasmon resonance. Silica nanoparticles have low refractive index and absorb light mostly in the ultraviolet (UV) region. The optical absorption band of the fabricated thin films extends from UV to visible region of the electromagnetic spectrum. The spectral characteristics of these thin‐film assemblies are a combination of thickness and the order of the layers in a stack. These films have potential applications as optical elements and in optoelectronics. © 2011 Canadian Society for Chemical Engineering  相似文献   

2.
Continuing earlier work, 2,2′‐azobis(isobutyramidine) dihydrochloride (AIBA) was used as a cationic initiator to generate positively charged polymers, and promote interaction of these polymers with the negatively charged surface of colloidal silica particles in aqueous solution. Three different synthetic routes have been investigated. In a first route, emulsion polymerization of MMA, initiated by AIBA, was performed directly in an aqueous suspension of the silica beads using a non‐ionic polyoxyethylenic surfactant (NP30). In a second route, AIBA was first adsorbed on the silica surface, and the free amount of initiator was discarded from the suspension. The silica‐adsorbed AIBA adduct was suspended in water with the help of surfactant, and used to initiate the emulsion polymerization of MMA. In a third route, cationic PMMA particles were synthesized separately and subsequently adsorbed on the silica surface. Whatever the approach used for their elaboration, the colloidal nanocomposites were shown to exhibit a raspberry‐like morphology. Quantitative determination of the amount of surface polymer enabled us to evaluate the efficiency of the heterocoagulation process and establish a comparison among the three synthetic routes. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
Polyacrylate/silica hybrid latexes (PAES) with high silicon contents (up to 21%) were prepared by directly mixing colloidal silica with polyacrylate emulsion (PAE) modified by a silane coupling agent. Sol–gel-derived organic/inorganic thin films were obtained by addition of hydrophilic co-solvents to PAES and subsequent drying at room temperature. The effects of co-solvents and γ-methacryloxypropyltrimethoxysilane (KH570) content on the properties of PAES films were investigated. Dynamic light scattering (DLS) data indicated that the average diameter of PAES (96 nm) was slightly larger than that of PAE (89 nm). TEM photo revealed that colloidal silica particles were dispersed uniformly around polyacrylate particles and that some of the colloidal silica particles were adsorbed on the surface of PAE particles. The data of crosslinking degree and FT-IR spectra confirmed that the chemical structure of the PAES changed to form Si–O–Si-polymer crosslinking networks during the film formation. AFM photos, contact angle for water, and XPS analysis showed that the polyacrylate/inorganic hybrid films with high silicon contents were formed by the co-solvent-mediated, sol–gel method and that the Si-based polymers were uniformly distributed on the surface of the dried films. TGA data demonstrated that the PAES films display much better thermal stability than the PAE counterpart.  相似文献   

4.
We prepared silica colloidal membranes suspended in glass openings and containing no major mechanical defects. The surface of these colloidal membranes was modified with amine groups. The diffusion rate of Fe(bpy)32+ through the suspended amine-modified colloidal membranes was attenuated by adding acid to the solution. The amine-modified colloidal membranes displayed an average selectivity (the ratio of diffusion rates in the absense and presence of the acid) of 2.6 for Fe(bpy)32+. This selectivity is believed to result from the electrostatic repulsion between the protonated amine-modified membrane surface and positively charged Fe(bpy)32+ and was confirmed by observing no change in (1) the diffusion rate of Fe(bpy)32+ through an unmodified suspended colloidal membrane, and (2) the diffusion rate of a neutral molecule through the amine-modified colloidal membrane with and without the acid present in solution.  相似文献   

5.
With the goal of developing a waterborne coating material that prevents staining, organic-inorganic composites prepared from colloidal silica and two types of acrylic resin emulsions were investigated as exterior coatings. conventional acrylic resin emulsion and organic silane hybridized acrylic resin emulsion prepared by emulsion polymerization were mixed with colloidal silica to form organic-inorganic comiposite films. The addition of colloidal silica to emulsions yielded films with higher hydrophilicities, as indicated by lower water contact angles for these films in comparison to films without colloidal silica. The water contact angles of organic silane hybridized acrylic resin emulsion/colloidal silica films were lower than those of acrylic resin emulsion/colloidal silica films. Composite films containing colloidal silica particles smaller than 100 nm in diameter showed high hydrophilicities. Observations of the dispersed state of colloidal silicaparticles in organic-inorganic composite films by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that colloidal silica particles were densely aggregated on the film surface. Outdoor exposure tests of the coating materials prepared from organic silane hybridized acrylic resin and colloidal silica particles with diameters of 7.5 nm showed excellent stain resistance.  相似文献   

6.
To design an organic–inorganic composite material with colloidal silica as the inorganic component, an acrylic resin emulsion and an organic silane hybridized acrylic resin emulsion were prepared by emulsion polymerization. The organic–inorganic composite films were prepared by blending the emulsion and the colloidal silica. The contact angles for water, gloss at 60°, and the transparencies of those films were measured. The dispersion state of colloidal silica in films was observed with a scanning electron microscope (SEM) and a transmission electron microscope (TEM). From these results, the contact angle for water of the organic–inorganic composite film obtained from the silane hybridized acrylic resin emulsion was lower than that of the organic–inorganic composite film obtained from an acrylic resin emulsion. The contact angles for water in organic–inorganic composite films with colloidal silicas were lower than those of the films without the colloidal silicas. The films prepared from silane hybridized acrylic resin emulsion composites with colloidal silicas of less than 100 nm were more hydrophilic. SEM and TEM observations demonstrated that some aggregations of the small colloidal particle silica were densely dispersed on the film surface. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2051–2056, 2006  相似文献   

7.
油性介质中组装二氧化硅胶体晶体薄膜   总被引:3,自引:1,他引:3  
许静  谢凯  龙永福  肖加余 《硅酸盐学报》2005,33(11):1348-1351
报道厂一种由粒径大于700nm的SiO2微球组装胶体晶体薄膜的方法。以一种密度较大的疏水性有机物替代水或醇类为分散剂,通过对SiO2微球表面进行疏水性处理改善其在油性介质中的分散性,采用改进的垂直沉积法在油性分散剂中制备SiO2胶体晶体。用扫描电子显微镜、红外光谱仪和紫外-可见光谱仪对SiO2胶体晶体薄膜的形貌、结构和光学性能进行了观察测试。结果表明;较大密度的分散剂能有效降低SiO2微球的沉降速度,组装成直径在700~2000nm范围的SiO2微球的胶体晶体。获得的SiO2光子晶体具有长程有序结构,并在近红外区具有显著的光子频率带隙。  相似文献   

8.
The ability of a Keggin-type polyoxometallate, phosphododecamolybdate (PMo12O403−), to form stable anionic monolayers on carbon nanoparticles and multi-wall nanotubes is explored here to produce stable colloidal solutions of polyoxometallate covered carbon nanostructures and to disperse them within conducting polymer, poly(3,4-ethylenedioxythiophene), i.e. PEDOT, or polyaniline multilayer films. By repeated alternate treatments in the colloidal suspension of PMo12O403−-protected carbon nanoparticles or nanotubes, and in the acid solution of a monomer (3,4-ethylenedioxythiophene or aniline), the amount of the material can be increased systematically (layer-by-layer) to form stable three-dimensional organized arrangements (networks) of interconnected organic and inorganic layers on electrode (e.g. glassy carbon) surfaces. In hybrid films, the negatively charged polyoxometallate-covered carbon nanostructures interact electrostatically with positively charged conducting polymer ultra-thin layers. Consequently, the attractive electrochemical charging properties of conducting polymers, reversible redox behavior of polyoxometallate, as well as the mechanical and electrical properties of carbon nanoparticles or nanotubes can be combined. The films are characterized by fast dynamics of charge transport, and they are of potential importance to electrocatalysis and charge storage in redox capacitors.  相似文献   

9.
Waterborne ultraviolet-curable polyurethane (WUPU) and its nanocomposites based on polycarbonate and α,ω-dihydroxy-[poly(ε-caprolactone)-poly(dimethylsiloxane)-poly(ε-caprolactone)] (PCL-PDMS-PCL) were synthesized using isophorone diisocyanate (IPDI), dimethyl propionic acid (DMPA), polycarbonate diol (PCD), PCL-PDMS-PCL, hydroxyethyl methacrylate (HEMA), and aqueous colloidal silica. The resulting WUPU materials were characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies, dynamic light scattering (DLS), and rheometry. The effects of PCL-PDMS-PCL and silica on the colloidal, physicochemical, and surface properties of the WUPU and its nanocomposites were studied. It was found that incorporation of PCL-PDMS-PCL (10 wt%) significantly enhanced the Young’s modulus, tensile strength, surface hydrophobicity, and water resistance of the WUPU films due to microphase separation and better interfacial adhesion between the PDMS soft phase and urethane hard phase provided by the PCL blocks. Furthermore, incorporation of silica (10 wt%) further improved the modulus, tensile strength, and water resistance of the PCD-PCL-PDMS-PCL-WUPU films without degrading the high surface hydrophobicity or transparency, due to the homogeneous dispersion and network structure of the silica clusters in the WUPU matrix.  相似文献   

10.
Water-cast films of two ethers of cellulose, hydroxypropylcellulose (HPC) and hydroxyethylcellulose (HEC), with dispersed silica particles, were deposited on flat substrates. X-ray specular reflectivity was used to characterize the structure of these solid ca. 1000 Å thick films as a function of the added colloidal fraction. It was shown that the structural changes resulting from increasing amounts of incorporated silica particles pass through distinctively different routes in the case of HPC- and HEC-based films. However, the structures in the two cases are similar at sufficiently high colloidal fraction.  相似文献   

11.
A novel polymer/SiO2 hybrid emulsion (PAES) was prepared by directly mixing colloidal silica with polyacrylate emulsion (PAE) modified by a saline coupling agent. The sol-gel-derived thin films were obtained by addition of co-solvents into the PAES. The effects of γ-methacryloxypropyltrimethoxysilane (KH-570) content and co-solvent on the properties of PAES films were investigated. Dynamic laser scattering (DLS) data indicate that the average diameter of PAES (96 nm) is slightly larger than that of PAE (89 nm). Transmission electron microscopy (TEM) photo discloses that colloidal silica particles are dispersed uniformly around polyacrylate particles and some of the colloidal silica particles are adsorbed on the surface of PAE particles. The crosslinking degree data and Fourier transform infrared (FT-IR) spectra confirm that the chemical structure of the PAES is changed to form Si-O-Si-polymer crosslinking networks during the film formation. Atomic force microscope (AFM) photos show the solvent induced sol-gel process of colloidal silica and the Si-based polymer distribution on the film surface of the dried PAES. Thermogravimetric analysis (TGA) curves demonstrate that the PAES films display much better thermal stability than PAE.  相似文献   

12.
Ionic transport through cylindrical nanochannels with linearly varied surface charge density was numerically investigated. The ends of the nanochannel were connected to microchannels regarded as reservoirs. The walls at the micro/nanochannel junction were referred to as sidewalls that can be electrically neutral or charged. The results showed that the charged sidewalls could enhance the concentration polarization compared to neutral sidewalls. For neutral sidewall, a limiting current similar to charged permselective membranes and a maximum current rectification ratio at certain bulk concentration similar to charged conical nanopores can be found. For the charged sidewall case, no limiting current regime can be observed and the current varied linearly with the applied voltage with a larger slope compared to the Ohmic relation regime. Moreover, no maximum current rectification ratio can be found and the current rectification ratio increased with the decrease in bulk concentration and increases in surface charge density and sidewall length.  相似文献   

13.
Fluoroalkyl end-capped acrylic acid oligomers/fullerenes nanocomposites reacted smoothly with tetraethoxysilane (TEOS) and silica nanoparticles under alkaline conditions to give fluoroalkyl end-capped oligomers/silica composites-encapsulated fullerenes. Interestingly, these isolated fluorinated composites were found to afford nanometer size-controlled colloidal particles with a good dispersibility in a variety of organic solvents including water. More interestingly, these fluorinated silica nanocomposites-encapsulated fullerenes were applied to a new type of surface modification agent, and these nanocomposites were able to disperse well above the poly(methyl methacrylate) films to exhibit not only surface active property imparted by fluorine but also a unique characteristic related to fullerenes in the nanocomposites on the surface, effectively.  相似文献   

14.
Kaixuan Sheng 《Polymer》2011,52(24):5567-5572
Graphene/polyaniline (PANI) multilayer films were prepared via alternate deposition of negatively charged graphene oxide (GO) and positively charged PANI upon electrostatic interaction, followed by the reduction of their GO components with hydroiodic acid. The thickness of the multilayer film increased linearly with the number of its bilayers and that of each bilayer was measured to be about 3 nm. Cyclic voltammetry studies indicated that these thin composite films were electroactive, and their redox reactions were related to the insertion-extraction of counter ions in PANI layers. Furthermore, the composite films were tested to be promising electrode materials for electrochromic devices even without using the conventional indium tin oxide (ITO) electrodes.  相似文献   

15.
Electrostatic interactions between colloidal particles and collector surfaces were found to be important in particle detachment as induced by the passage of air bubbles in a parallel-plate flow chamber. Electrostatic interactions between adhering particles and passing air bubbles, however, were found to be less important. Regardless of the charge on the particles, detachment increased linearly with decreasing air bubble velocity and increasing liquid-air interfacial tension. Detachment efficiencies up to 75% could be achieved even for positively charged particles adhering to a negatively charged collector surface, provided that the velocity of the air bubble was low (2.37 mm s-1) and the tension at the liquid-air interface was high (70.08 mJ m-2). The detachment of positively charged particles was most sensitive to the air bubble velocity when adhering to a hydrophobic, negatively charged collector surface and least sensitive when adhering to a positively charged collector surface, but appeared equally sensitive to the liquid-air interfacial tension for all collector surfaces. On the other hand, the detachment of negatively charged particles was most sensitive to both the velocity of the air bubble and the tension at the liquid-air interface when adhering to a positively charged collector surface.  相似文献   

16.
In this paper, a novel strategy for the fabrication of sensitive reagentless amperometric immunosensor was proposed. Firstly, Prussian blue nanoparticles (PBNPs) as redox probe were immobilized on three dimensional structured membrane of the gold colloidal nanoparticles (AuNPs) doped chitosan-multiwall carbon nanotubes (CS-MWNTs) homogeneous composite (CS-MWNTs-AuNPs) by electrostatic interactions between the negatively charged PBNPs and the positively charged amino groups of CS and strong binding interaction between GNPs and nitrile group (-CN) of PBNPs. Subsequently, the gold nanoparticles (GNPs) were electrodeposited on the surface of the composite by electrochemical reduction of gold chloride tetrahydrate (HAuCl4) to immobilize antibody biomolecules (anti-CEA) and avoid the leakage of PBNPs. The stepwise assembly process was characterized by means of cyclic voltammetry (CV) and electrochemical impendance spectroscopy (EIS). Furthermore, the morphology of the prepared nanomaterials was researched by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Under the optimized conditions, the decrease of CVs current of determination CEA was proportional to concentration ranges from 0.3 to 120 ng/mL with a detection limit of 0.1 ng/mL at a signal-to-noise of 3. Moreover, the proposed immunosensor exhibited good accuracy, high sensitivity and stability.  相似文献   

17.
Multi-walled carbon nanotube (MWCNT)/polyimide composite films were fabricated through electrophoretic deposition (EPD) of MWCNT-polyamic acid colloidal suspension which was derived from carboxylated-MWCNTs and poly(pyromellitic dianhydride-co-4,4′-oxydianiline) (PMDA-ODA). Under electric field, both negatively charged MWCNTs and PMDA-ODA colloid particles migrate onto a positively charged anode simultaneously, and are converted to a coherent MWCNT/polyimide composite film in the ensuing imidization reaction. Uniform dispersion of MWCNTs in the composite film was observed using transmission electron microscopy. The thickness of the prepared composite film can be tuned by varying processing conditions such as deposition time and anode conductivity. The electrical conductivity of the composite film increased with increasing the concentration of MWCNTs in EPD suspension. The mechanical reinforcement of polyimide using MWCNTs was evaluated by tensile testing and nanoindentation testing.  相似文献   

18.
Hybrid thin films containing nano-sized inorganic domain were synthesized from poly(acrylic) and monodispersed colloidal silica with coupling agent. The 3-(trimethoxysilyl)propyl methacrylate (MSMA) was bonded with colloidal silica first, and then polymerized with acrylic monomer to form a precursor solution. Then, the precursor was spin coated and cured to form the hybrid films. The silica content in the hybrid thin films was varied from 0 to 50 wt%. The experimental results showed that the coverage area of silica particle by the MSMA decreased with increasing silica content and resulted in the aggregation of silica particle in the hybrid films. Thus, the silica domain in the hybrid films was varied from 20 to 35 nm by the different mole ratios of MSMA to silica. The results of scanning electron microscope, transmission electron microscope, and elemental analysis support the above results. The prepared hybrid films from the crosslinked acrylic polymer moiety showed much better film uniformity, thermal stability and mechanical properties than the poly(methyl methacrylate) (PMMA) based hybrid materials. Large pin-holes were found in the PMMA-silica hybrid films probably due to the significant difference on thermal properties between the two moieties or the evaporation of solvent. The refractive index decreased linearly with increasing the silica fraction in the hybrid films. Excellent optical transparence was obtained in the prepared hybrid films. These results show that the hybrid thin films have potential applications as passive films for optical devices.  相似文献   

19.
A wet glass surface brought in contact with metallic iron acquires a brown stain which cannot be removed easily. This phenomenon was observed by the industry interested in the automatic washing of glass containers. Iron in contact with wet glass surfaces will produce a chemically detectable contamination in one minute and a visible stain in ten minutes. This reaction of the glass surface with iron is galvanic in nature. Iron immersed in water sends positively charged ferrous ions into solution and leaves the metal with a negative charge. In the neighborhood of the iron, a negative electrical potential is established in the glass surface which helps to attract the positively charged ions from the solution. The stain is a result of the interaction of the glass surface and the iron ions, thus leading through oxidation to the formation of an insoluble, colored ferric hydrosilicate. The staining can be prevented by reagents which (1) prohibit the corrosion of the iron, (2) block the active centers of the silica gel, and (3) produce anionic iron complexes.  相似文献   

20.
溶胶-凝胶法制备超疏水薄膜,加入胶体二氧化硅粒子和氟硅烷控制薄膜表面粗糙度和表面化学性质。胶体粒子团聚使薄膜表面具有很大的表面粗糙度,使薄膜体现出很好的疏水性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号