首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The shape of a slider bearing is one of the major geometric conditions influencing the performance of the bearing. The aim of this study is to design the optimum shapes of the surfaces of sliders to meet the load and center of pressure demands specified by the designers. The design strategy uses COMSOL Multiphysics software package to solve the modified Reynolds equation derived on the basis of stokes microcontinuum theory. The sequential quadratic programming (SQP) is used to optimize the shape of the slider bearing. Results show that designers seeking to effectively reduce friction should consider a reducing the aspect ratio since it is the most significant parameter affecting optimal friction. In addition, slider bearings should be optimized with a polynomial profile of order 6 to reduce the computational effort and yield a solution that is very close to the solution of higher order polynomials.  相似文献   

2.
A numerical study of the performance for a dynamically loaded journal bearing lubricated with couple stress fluids is undertaken. First of all, on the basis of micro-continuum theory, the generalized Reynolds equation for dynamic loads is derived. Then it is simultaneously solved with the force balance equation of the journal, thus obtaining the transient oil film pressure, the transient position and velocity of the journal center. Results from this analysis are presented for a typical engine crankshaft bearing. It is shown, compared with Newtonian lubricants, that under a dynamic loading lubricants with couple stress yield an obvious increase in oil film pressure and oil film thickness, but a decrease in the side leakage flow. Moreover, the effects of couple stress on friction force and friction coefficient vary considerably with time.  相似文献   

3.
This paper presents the theoretical study of the effect of surface roughness on the hydrodynamic lubrication of porous step-slider bearings. A more general form of surface roughness is mathematically modeled by a stochastic random variable with non-zero mean, variance and skewness. The generalized average Reynolds-type equation is derived for the rough porous step-slider bearing lubricated with Stokes couple stress fluid. The closed-form expressions for the mean load carrying capacity, frictional force and the coefficient of friction are obtained. The performance of the rough porous step-slider bearing is compared with a corresponding smooth porous step-slider bearing. The numerical computations of the results show that the negatively skewed surface roughness pattern increases the load carrying capacity and decreases the coefficient of friction whereas the adverse effects were found for the positively skewed surface roughness pattern.  相似文献   

4.
Thermohydrodynamic analysis of journal bearings is extended to include couple stress effects in lubricants blended with high polymer additives. Based on the micro-continuum theory, a modified energy equation is derived and then is simultaneously solved with the heat transfer equation as well as the modified Reynolds equation. The effects of couple stress on the key performance of a finite journal bearing, such as maximum temperature, shaft temperature, load capacity, friction force, friction coefficient, and side leakage flow, are presented. The results have shown that lubricants with couple stresses, compared with Newtonian lubricants, not only yield an obvious increase in load capacity and decrease in friction coefficient, but also produce a lower bearing temperature field. Thus it can be concluded that the lubricant with couple stress does improve the performance of journal bearings.  相似文献   

5.
The combined effects of couple stresses, fluid inertia and recess volume fluid compressibility on the steady-state performance and the dynamic stiffness and damping characteristics of hydrostatic circular step thrust bearings are presented theoretically. Based on the micro-continuum theory, the modified Reynolds equation and the recess flow continuity equation are derived by using the Stokes constitutive equations to account for the couple stress effect resulting from a lubricant blended with various additives. Using a perturbation technique, results in terms of steady-state load-carrying capacity, oil flow rate, stiffness and damping coefficients are presented. A design example is also illustrated for engineering and industrial applications.  相似文献   

6.
On the basis of microcontinuum theory, a theoretical analysis of hydrodynamic squeeze film behaviour for long partial journal bearings lubricated by fluids with couple stresses is presented. To take into account the couple stress effects due to the lubricant containing additives or suspended particles, the modified Reynolds equation governing the film pressure is derived by using the Stokes constitutive equations. Various bearing characteristics are then calculated. According to the results obtained, the influence of couple stress effects on the performance of the system is physically apparent and not negligible. Compared with the Newtonian lubricant case, the couple stress effects provide an enhancement in the load-carrying capacity and lengthen the response time of the squeeze film action. On the whole, the presence of couple stresses signifies an improvement in the squeeze film characteristics of the system.  相似文献   

7.
The non-Newtonian effects on the nonlinear stability boundary of short journal bearings are investigated through the transient nonlinear analysis. Two coupled nonlinear equations are solved by using the fourth-order Runge-Kutta method. According to the results, there exists a nonlinear stability boundary within the clearance circle. Any initial positions of the shaft center outside of this boundary would yield an unstable trajectory, even though the bearing should be stable in accordance with the linear stability theory. The non-Newtonian effects provide a larger stability boundary within the clearance circle as compared to the bearing lubricated with a Newtonian fluid.  相似文献   

8.
This paper presents the theoretical investigations of the rheological effects of the couple stress fluids on the static and dynamic behaviour of the pure squeeze films in the porous journal bearings. The present study predicts the effects of percolation of the polar additives (microstructures) into the porous matrix on the performance of squeeze films in the porous journal bearings. The most general modified Reynolds-type equation is derived for a porous journal bearing with no journal rotation. The analysis takes into account of the tangential velocity slip at the porous interface by using the BJ-slip condition. The cases of a short porous journal bearing under a constant applied load and that under an alternating load are analyzed. As compared to the Newtonian lubricants, the lubricants which sustain the couple stresses yield an increase in the load carrying capacity. Under a cyclic load the couple stress fluids provide a reduction in the journal velocity and an increase in the minimum permissible height of squeeze films.  相似文献   

9.
Abstract

The purpose of this paper is to study the effect of surface roughness on the performance of curved pivoted porous slider bearings lubricated with couple stress fluid. The modified B–J slip boundary condition is utilised at the porous/fluid film interface to derive the Reynolds type equation for the problem under consideration. To mathematically model the surface roughness due to non-uniform rubbing of bearing surfaces, a stochastic random variable with non-zero mean, variance and skewness is considered. The closed form solution is obtained for the averaged Reynolds equation, and the compact expressions for the mean fluid film pressure mean load carrying capacity, frictional force and the centre of pressure are obtained. The numerical computations of the results show the improved performance due to the couplestresses and the presence of negatively skewed surface roughness. However, the presence of porous facing and positively skewed surface roughness affects the performance of the pivoted porous slider bearing.  相似文献   

10.
A numerical solution for the elastohydrodynamic lubrication of finite journal bearings is presented. Couple stress effects resulting from blending the lubricant with various additives are considered. Elrod's cavitation algorithm, which automatically predicts film rupture and reformation in the bearings, is implemented in the solution scheme. A simple elastic model is used to describe the elastic deformation of the bearing liner. Furthermore, the effects of surface waviness on the performance of the bearing are incorporated into the analysis. A comprehensive study illustrates the effects of couple stress, liner flexibility, and surface waviness on the steady‐state performance of finite‐width journal bearings. The results show that these effects should be considered at higher values of the eccentricity ratio.  相似文献   

11.
In this paper the effect of surface roughness on the performance of curved pivoted slider bearings is studied. A more general type of surface roughness is mathematically modelled by a stochastic random variable with nonzero mean, variance and skewness. The averaged modified Reynolds type equation is derived on the basis of Stokes microcontinuum theory for couple stress fluids. The closed‐form expressions for the mean pressure, load‐carrying capacity, frictional force and the centre of pressure are obtained. Numerical computations show that the performance of the slider bearing is improved by the use of lubricants with additives (couple stress fluid) as compared to Newtonian lubricants. Further, it is observed that the negatively skewed surface roughness increases the load‐carrying capacity and frictional force and reduces the coefficient of friction, whereas the positively skewed surface roughness on the bearing surface adversely affects the performance of the pivoted slider bearings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents an inverse solution for finite journal bearings lubricated with couple stress fluids to estimate the eccentricity ratio and the couple stress parameter for a given experimentally measured pressure distribution. The least-squares optimization technique is used to solve the inverse problem. An efficient numerical scheme is developed to solve the direct lubrication problem, which consists of the modified Reynolds equation, the film thickness equation, and the boundary conditions for the pressure field. The flexibility of the bearing liner is considered in the film thickness equation by a simple elastic model. The proposed inverse algorithm was tested using numerically simulated pressure distribution. The results showed that as the percentage of random error added to the numerically calculated pressure data points increases, the number of iterations required for convergence increases slightly, and the accuracy of the predictions decreases especially in the case of elastic liner.  相似文献   

13.
A general theoretical study of an infinitely wide lubricated slider bearing is presented, considering the lubricant to be an incompressible, isothermal, power law fluid. A set of algebraic equations is developed to obtain the pressure gradient for any value of the power law index. To illustrate the mathematical development, the set of equations is used to calculate the pressure gradient for two special forms of slider bearings, viz., inclined and parabolic slider bearings. In these two cases, the variation of pressure, load capacity, coefficient of friction, etc. for a range of fluid- and bearing-parameters is presented. In order to obtain optimum load capacity for an inclined and a parabolic slider bearing, the variations of load capacity, coefficient of friction, etc., with respect to the simultaneous changes of the inlet–oulet film height ratio and of the power law index of lubricants are also analysed. The results are presented both numerically and graphically. The results reveal that in the cases of an inclined and a parabolic slider bearings the inlet–outlet film height ratio for the optimum load capacity depends on the power law index of lubricants. Further, for each value of power law index, there exists a value of inlet–outlet film height ratio for which the frictional coefficient is minimum.  相似文献   

14.
This paper introduces an analytical approach to study the textured surfaces in hydrodynamic lubrication regime. For this purpose, a method of integrating the Reynolds equation for slider bearings with surface discontinuities is presented. By introducing appropriate dimensionless parameters, analytical relations for various texture profiles in both indented and projected forms are delivered. These relations express the nature of mathematical dependence between textured bearing performance measures and geometrical/operational parameters. An optimisation procedure is employed to achieve the optimum texturing parameters promoting maximum load capacity, load capacity to lubricant flow rate ratio and minimum friction coefficient for asymmetric partially textured slider bearings.  相似文献   

15.
The effect of surface roughness on static and dynamic characteristics of parabolic slider bearing lubricated with couple stress fluid in the presence of magnetic field is theoretically analysed in this paper. The modified stochastic MHD couple stress Reynolds-type equation is derived on the basis of Christensen stochastic theory and considered two types of roughness pattern namely longitudinal and transverse. Expressions for steady pressure and load, dynamic stiffness and damping coefficients are obtained for both roughness patterns. Compared to smooth surface, transverse roughness pattern provides larger load-carrying capacity, dynamic stiffness and damping coefficients, whereas longitudinal roughness pattern has adverse effects. The presence of couple stress and applied magnetic field improves the bearing performance.  相似文献   

16.
A theoretical study of slider bearings in general form is presented, considering the lubricant to be an isothermal, incompressible electrically conducting couple stress fluid in the presence of a uniform magnetic field. An expression for a modified Reynolds equation is derived in order to obtain pressure gradient in terms of inlet–outlet (IO) film height ratio (simply IO film ratio) of slider bearings. As a special case, a study of the IO film ratio of four particular types of slider bearings is analysed. For the study of optimum load capacity, three-dimensional geometry has been assumed in order to consider side flow. Values of maximum load capacity for various values of couple stress and magnetic parameters, and the corresponding IO film ratio of the four bearings are obtained numerically, and a comparative study of these values has been presented. A comparative study of optimum load-carrying capacity for finite and infinite slider bearings has also been made. It is observed that both the values of maximum load capacity and the corresponding IO film ratio depend on couple stress and magnetic parameters and the shape of bearings conjointly. The present results are also compared with the similar available data in Newtonian cases.  相似文献   

17.
To inspect the performance characteristics of finite journal-bearing systems, the combined effects of couple stress due to a Newtonian lubricant blended with additives and the presence of roughness on journal-bearing surfaces are studied in this article. Basing on the Stokes theory and Christensen’s stochastic model, the stochastic generalized Reynolds equation is deduced. The film pressure distribution equation is numerically solved by using the conjugate gradient method of iterations. According to the results, the couple stress effects can raise the film pressure of the lubricant fluid, improve the load-carrying capacity and reduce the friction parameter, especially at high eccentricity ratio. The surface roughness effect is dominant in long bearing approximation and the influence of transverse or longitudinal roughness to the journal bearing is in reverse trend. In general, the critical value of length-to-diameter is 1.1.  相似文献   

18.
This work concerns the steady‐state and dynamic analysis of misaligned compliant journal bearings considering the effects of couple stresses arising from the lubricant blended with polymer additives. Based on the Stokes micro‐continuum theory, a modified form of the Reynolds equation is derived. The displacement field at the fluid film–bearing liner interface due to pressure forces is determined using the elastic thin liner model. The effects of the misalignment and the couple stress parameters on static and dynamic performances such as pressure distribution, load‐carrying capacity, power loss, side leakage flow, misalignment moment, critical mass and whirl frequency are presented and discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Deriving a general dynamic Reynold’s equation of sliding-squeezing surfaces with non-Newtonian fluids is necessary for the assessment of dynamic characteristics of a lubricating system. Taking into account the transient squeezing-action effect and considering the effects of couple stresses resulting from the lubricant blended with various additives, the non-Newtonian dynamic Reynold’s equation applicable to the general film shape is derived by using the Stokes micro-continuum theory. As an application, the numerical analysis of a two-dimensional plane inclined slider bearing is illustrated. Based upon the small perturbation technique, two Reynold’s-type equations responsible for both the steady performance and the perturbed characteristics are obtained. The steady and perturbed pressures are then numerically calculated by using the conjugate gradient method. From the results obtained, the effects of couple stresses provide an improvment on both the steady-state performance and the dynamic stiffness and damping characteristics especially for the bearing with a higher value of aspect ratio.  相似文献   

20.
Based upon the microcontinuum theory, the present paper is to theoretically study the pure squeeze-film behavior of a finite partial journal bearing with non-Newtonian couple-stress lubricants operating under a time-dependent cyclic load. To take into account the couple stress effects resulting from the lubricant blended with various additives, the modified Reynolds equation governing the film pressure is obtained from Stokes equations of motion. The film pressure is numerically solved by using the Conjugate Gradient Method. Bearing characteristics are then calculated from the nonlinear motion equation of the journal. According to the results obtained, the effects of couple stresses result in a decrease in the value of eccentricity of the journal center. The finite partial bearing with a couple stress fluid as the lubricant yields an increase in the minimum permissible clearance and provides a longer time to prevent the journal-bearing contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号