首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZrO2–Y2O3 ceramic coatings were deposited on AISI 304 stainless steel by both a low-pressure plasma spraying (LPPS) and a laser-assisted plasma hybrid spraying (LPHS). Microstructure and tribological characteristics of ZrO2–Y2O3 coatings were studied using an optical microscope, a scanning electron microscope, and an SRV high-temperature friction and wear tester. The LPHS coatings exhibit distinctly reduced porosity, uniform microstructure, high hardness and highly adhesive bonding, although more microcracks and even vertical macrocracks seem to be caused in the LPHS coatings. The ZrO2 lamellae in the LPHS coatings before and after 800°C wear test consist mainly of the metastable tetragonal (t′) phase of ZrO2 together with small amount of c phase. The t′ phase is very stable when it is exposed to the wear test at elevated temperatures up to 800°C for 1 h. The friction and wear of the LPHS coatings shows a strong dependence on temperature, changing from a low to a high wear regime with the increase of temperature. At low temperatures, friction and wear of the LPHS coatings is improved by laser irradiation because of the reduced connected pores and high hardness in contrary to the LPPS coating. However, at elevated temperatures, the friction and wear of the LPHS coatings is not reduced by laser irradiation. At room temperature, mild scratching and plastic deformation of the LPHS coatings are the main failure mechanism. However, surface fatigue, microcrack propagation, and localized spallation featured by intersplat fracture, crumbling and pulling-out of ZrO2 splats become more dominated at elevated temperatures.  相似文献   

2.
The ultra-low friction coefficient (typically in the 10−2 range) of MoS2-based coatings is generally associated with the friction-induced orientation of ‘easy-shear’ planes of the lamellar structure parallel to the sliding direction, particularly in the absence of environmental reactive gases and with moderate normal loads. We used and AES/XPS ultra-high vacuum tribometer coupled to a preparation chamber, thus allowing the deposition of oxygen-free MoS2 PVD coatings and the performance of friction tests in various controlled atmospheres. Friction of oxygen-free stoichiometric MoS2 coatings deposited on AISI 52100 steel was studied in ultra-high vacuum (UHV: 5 × 10−8 Pa), high vacuum (HV: 10−3 Pa), dry nitrogen (105 Pa) and ambient air (105 Pa). ‘Super-low’ friction coefficients below 0.004 were recorded in UHV and dry nitrogen, corresponding to a calculated interfacial shear strength in the range of 1 MPa, about ten times lower than for standard coatings. Low friction coefficients of about 0.013–0.015 were recorded in HV, with interfacial shear strength in the range of 5 MPa. Friction in ambient air leads to higher friction coefficients in the range of 0.2. Surface analysis performed inside the wear scars by Auger electron spectroscopy shows no trace of contaminant, except after friction in ambient air where oxygen and carbon contaminants are observed. In the light of already published results, the ‘super-low’ friction behaviour (10−3 range) can be attributed to superlubricity, obtained for a particular combination of cystallographic orientation and the absence of contaminants, leading to a considerable decrease in the interfacial shear strength.  相似文献   

3.
J. F.  C. X. 《Wear》2000,240(1-2):180-185
Electroless-plated Ni-based alloy coatings, Ni, Ni–Co and Ni–Mo coatings with thickness less than 5 μm were deposited on surfaces of plasma-sprayed Cr3C2–NiCr coating. The tribological properties of these electroless-plated coatings against the as-sprayed Cr3C2–NiCr coating as sliding pairs were investigated with a block-on-ring arrangement in air at room temperature. It was found that all the Ni-based alloy coatings effectively improved the tribological properties of the Cr3C2–NiCr coating. Especially when the Cr3C2–NiCr coatings plated with Ni–Co and Ni–Mo coatings were against the as-sprayed Cr3C2–NiCr coating as sliding pairs, friction coefficients of 0.10 to 0.13 and coefficients wear coefficients less than 10−6 mm3·N−1·m−1 were achieved. Through examination and analysis of the worn surfaces employing scanning electron microscopy and X-ray photoelectron spectrometer, the improvement in tribological properties of the Cr3C2–NiCr coating may be attributed to the transformation of wear mechanism and the formation of CrO3 on the worn surfaces.  相似文献   

4.
This paper studies the friction and wear behaviour of two important bearing materials, Thordon XL and LgSn80, in dry and lubricated sliding vs. plasma-sprayed Cr2O3 coatings. As a reference, AISI 1043 steel is also studied under the same conditions. SEM, EDS and surface topography were employed to study the wear mechanisms. The results indicate that the Thordon XL/Cr2O3 coating pair gives the lowest dry friction coefficient (0.16) under a normal load of 45.3 N (pressure 0.453 MPa) at a velocity of 1 m/s. The dry friction coefficient of Thordon XL/Cr2O3 coating increases to 0.38 under a normal load of 88.5 N (pressure 0.885 MPa). The dry friction coefficients of the LgSn80/Cr2O3 coating are in the range of 0.31–0.46. Secondly, both dry wear rate under low normal load (45.3 N) and lubricated wear rate under a load of 680 N for Thordon XL are lower than those of LgSn80 in sliding against plasma-sprayed Cr2O3 coatings at a speed of 1 m/s. However, under a normal load of 88.5 N the dry wear rate of Thordon XL is much higher than that of LgSn80. Thirdly, a high viscosity lubricant (SAE 140) leads to lower wear for Thordon XL and LgSn80 than a low viscosity lubricant (SAE 30). Finally, the dominating wear mechanism for Thordon XL is shear fracture when against the plasma-sprayed Cr2O3 ceramic coating. For LgSn80 against plasma-sprayed Cr2O3 ceramic coating, abrasive wear is the governing failure mechanism.  相似文献   

5.
Significant advancements in the production of low friction, long wear life, sputter-deposited MoS2 lubricant coatings have been made in the last decade. The introduction of multi-layered coatings, the establishment of careful controls on doping during DC and magnetron sputter deposition, and the implementation of ion assisted deposition have resulted in lubricants with substantially longer wear lives (up to a factor of ten greater than in the early 1980s) and lower sliding friction coefficients. A major research effort, designed to improve the performance of solid lubricants, involved a number of laboratories during this time period, resulting in these major breakthroughs. However, even with this concentrated effort, the typical investigation involved making an educated guess, based on previous experience, of the deposition conditions, target compositions, or post treatments that might be expected to provide improved performance of resulting coatings. One notable discovery during this time period was that typical MoS2 films contain large quantities (up to 20 atom %) of oxygen substituted for sulfur in individual crystal lattices. In this paper we will compare the effects of this oxygen substitution with the effects of oxidation which involves a change in the oxidation number of the central molybdenum atoms within the crystals. A discussion of the relationship(s) between chemistry and coating structure and tribological performance will be presented with emphasis on defect chemistry and multiple phase interactions. Speculations on the role of coating chemistry in determining coating performance in applications such as in ball bearings will be presented.  相似文献   

6.
This study investigates the influence of sliding speed and normal load on the friction and wear of plasma-sprayed Cr2O3 coatings, in dry and lubricated sliding against AISI D2 steel. Friction and wear tests were performed in a wide speed range of 0.125–8 m/s under different normal loads using a block-on-ring tribometer. SEM, EDS and XPS were employed to identify the mechanical and chemical changes on the worn surfaces. A tangential impact wear model was proposed to explain the steep rising of wear from the minimum wear to the maximum wear. The results show that the wear of Cr2O3 coatings increases with increasing load. Secondly, there exist a minimum-wear sliding speed (0.5 m/s) and a maximum-wear sliding speed (3 m/s) for a Cr2O3 coating in dry sliding. With the increase of speed, the wear of a Cr2O3 coating decreases in the range 0.125–0.5 m/s, then rises steeply from 0.5 m/s to 3 m/s, followed by a decrease thereafter. The large variation of wear with respect to speed can be explained by stick-slip at low speeds, the tangential impact effect at median speeds and the softening effect of flash temperature at high speeds. Thirdly, the chemical compositions of the transfer film are a-Fe2O3 in the speed range 0.25–2 m/s, and FeO at 7 m/s. In addition, the wear mechanisms of a Cr2O3 coating in dry sliding versus AISI D2 steel are adhesion at low speeds, brittle fracture at median speeds and a mixture of abrasion and brittle fracture at high speeds. Finally the lubricated wear of Cr2O3 coating increases sharply from 1 to 2.8 m/s.  相似文献   

7.
The rotational fretting wear behaviors of the bonded MoS2 solid lubricant coating and its substrate steel were comparatively studied under varied angular displacement amplitudes, constant normal load, and rotational speed. Dynamic analysis in combination with microscopic examinations was performed through SEM, EDX, XPS, optical microscope, and surface profilometer. The experimental results showed MoS2 changed the fretting running regimes of substrate. The friction coefficients of MoS2 were lower than those of the substrate. For MoS2, the damage in partial slip regime was very slight. The damage mechanism of the coating in slip regime was main abrasive wear, delamination, and tribo-oxidation.  相似文献   

8.
Tribological properties of MoS2 micrometer spheres modified by self-prepared surfactant as an additive in liquid paraffin (LP) are studied and compared with those of the commercial colloidal MoS2 on a four-ball tester and an Optimol SRV oscillating friction and wear tester. The worn surfaces are examined with SEM and XPS, respectively. Results show that MoS2 micrometer sphere is a much better extreme-pressure additive and anti-wear and friction-reducing additive in LP than the commercial colloidal MoS2. The boundary lubrication mechanism can be deduced as an effective chemical adsorption protective film formed by the long chain alkyl and active elements (S and N) in the prepared surfactant and tribochemical reaction film composed of the tribochemical reaction products of the additive. Moreover, sliding and rolling frictions exist simultaneously in the MoS2 micrometer spheres /LP lubricating system, which also do more contributions to the good tribological properties.  相似文献   

9.
采用太赫兹散射式扫描近场光学显微镜(THz s-SNOM)研究了化学气相沉积法制备的单层MoS2和WS2晶粒的太赫兹近场响应。在没有可见光激发时,未探测到可分辨的太赫兹近场响应,说明晶粒具有较低的掺杂载流子浓度。有可见光激发时,由于光生载流子的太赫兹近场响应,能够测得与晶粒轮廓完全吻合的太赫兹近场显微图。在相同的光激发条件下,MoS2的太赫兹近场响应强于WS2,反映了两者之间载流子浓度或迁移率的差异。研究结果表明,THz s-SNOM兼具超高的空间分辨率和对光生载流子的灵敏探测能力,对二维半导体材料和器件光电特性的微观机理研究具有独特的优势。  相似文献   

10.
MoS2 single sheet lubrication by molybdenum dithiocarbamate   总被引:1,自引:0,他引:1  
The mechanisms by which Modtc reduces friction in the centirange under boundary lubrication have been investigated using analytical tribometry. First, the SRV friction test was coupled with energy-filtering TEM on wear fragments and spatially-resolved XPS inside the wear scars. Second, we performed UHV friction tests on Modtc tribofilms previously created on a large area. The overall data demonstrate that the mechanisms of friction-reduction by Modtc is attributed to the effect of sliding between single layers of MoS2 only, and not to intra-sliding in MoS2 3-D crystal. Highly-dispersed MoS2 sheets are present in a carbon matrix in the tribofilm material. The growth of the 2-D MoS2 single sheets is thought to be formed by degradation of the Modtc molecule by electron transfer mechanisms activated by the friction process. The lubrication of the uncoated, stationary counterface is attributed to successive transfer of individual sheets towards the friction surface. Practically, in these conditions only a few per cent of dispersed MoS2 is sufficient to lubricate at the same level as pure MoS2.  相似文献   

11.
ZrO2 (Y2O3) with different contents of BaF2/CaF2 and Mo were fabricated by hot pressed sintering, and the tribological behavior of the composites against SiC ceramic was investigated from room temperature to 1000 °C. It was found that the ZrO2 (Y2O3)-5BaF2/CaF2-10Mo composite possessed excellent self-lubricating and anti-wear properties. The low friction and wear were attributed to enhanced matrix and BaMoO4 formed on the worn surfaces.  相似文献   

12.
Al2O3 and Cr2O3 coatings were deposited by atmospheric plasma spraying and their tribological properties dry sliding against copper alloy were evaluated using a block-on-ring configuration at room temperature. It was found that the wear resistance of Al2O3 coating was superior to that of the Cr2O3 coating under the conditions used in the present study. This mainly attributed to its better thermal conductivity of Al2O3 coating, which was considered to effectively facilitate the dissipation of tribological heat and alleviate the reduction of hardness due to the accumulated tribological heat. As for the Al2O3 coating, the wear mechanism was plastic deformation along with some micro-abrasion and fatigue-induced brittle fracture, while the failure of Cr2O3 coating was predominantly the crack propagation-induced detachment of transferred films and splats spallation.  相似文献   

13.
Thin hard coatings on components and tools are used increasingly due to the rapid development in deposition techniques, tribological performance and application skills. The residual stresses in a coated surface are crucial for its tribological performance. Compressive residual stresses in PVD deposited TiN and DLC coatings were measured to be in the range of 0.03-4 GPa on steel substrate and 0.1-1.3 GPa on silicon. MoS2 coatings had tensional stresses in the range of 0.8-1.3 on steel and 0.16 GPa compressive stresses on silicon. The fracture pattern of coatings deposited on steel substrate were analysed both in bend testing and scratch testing. A micro-scale finite element method (FEM) modelling and stress simulation of a 2 μm TiN-coated steel surface was carried out and showed a reduction of the generated tensile buckling stresses in front of the sliding tip when compressive residual stresses of 1 GPa were included in the model. However, this reduction is not similarly observed in the scratch groove behind the tip, possibly due to sliding contact-induced stress relaxation. Scratch and bending tests allowed calculation of the fracture toughness of the three coated surfaces, based on both empirical crack pattern observations and FEM stress calculation, which resulted in highest values for TiN coating followed by MoS2 and DLC coatings, being KC = 4-11, about 2, and 1-2 MPa m1/2, respectively. Higher compressive residual stresses in the coating and higher elastic modulus of the coating correlated to increased fracture toughness of the coated surface.  相似文献   

14.
This paper studies experimentally the effects of CO2 laser-treatment on the wear behaviour of plasma-sprayed Al2O3 coatings, in linear contact sliding (dry, abrasive and lubricated) against SAE 4620 steel. Tests were carried out using a block-on-ring friction and wear tester, under different loads at different speeds. The wear mechanism and the changes in adherence, porosity and microstructure by laser treatment were also investigated. Results show a better wear behaviour for both laser-treated ceramic coating and its paired steel under dry and abrasive conditions, compared with the case without laser treatment. The lubricated wear behaviour of the laser-treated ceramic coating, however, is not improved. The changes in microhardness, porosity and adherence caused by the laser treatment are responsible for the change in wear behaviour of the ceramic coating.  相似文献   

15.
Tribological behavior of PTFE sliding against steel in sea water   总被引:3,自引:0,他引:3  
Jianzhang Wang  Fengyuan Yan  Qunji Xue 《Wear》2009,267(9-10):1634-1641
In this paper the tribological behaviors of PTFE against GCr15 steel in air, distilled water, sea water and 3.5 wt.% NaCl solution were comparatively investigated. The influence of sea water composition on the tribological behavior of PTFE was also studied. Results show that the friction process in sea water was relatively stable, the friction coefficient and the wear rate of PTFE were slightly lower and a little larger than those in distilled water, respectively, but both were much lower than those in air and NaCl solution. In aqueous environment, medium affected the tribological behavior of PTFE mainly by corrosion to the counterface, the wear rate of PTFE depended on the corrosion extent of the counterface, and this wear model can be called indirect corrosive wear. In salt solution, green rusts were formed on the counterface and had some lubricating effect. In addition, the results show Mg2+ and Ca2+ were the key factors for the relatively low friction coefficient and wear rate of PTFE in sea water, because the corrosion of counterface was reduced and the lubricating effect of green rusts was enhanced as a result of the deposition of Mg(OH)2 and CaCO3 on the counterface.  相似文献   

16.
Titanium alloys have been of great interest in recent years because of their very attractive combination of high strength, low density and corrosion resistance. Application of these alloys in areas where wear resistance is also of importance calls for thorough investigations of their tribological properties. In this work, Ti–6Al–4V and Ti–24Al–11Nb alloys were subjected to dry sliding wear against hardened-steel counter bodies and their tribological response was investigated. A pin-on-disc type apparatus was used with a normal load of 15–45N and sliding speed of 1.88 ms−1. In the steady state, it was demonstrated that Ti–24Al–11Nb had a substantially higher wear resistance (about 48 times) than that of the Ti–6Al–4V alloy tested under a normal load of 45 N. Severe delamination is found to be responsible for the low wear resistance of Ti-6Al-4V. In the case of Ti–24Al–11Nb, two wear mechanisms have been suggested: delamination with a lower degree of severity and oxidative wear. It is thought that the ability of Ti–24Al–11Nb to form a protective oxide layer during wear results in a much lower wear rate in this alloy.  相似文献   

17.
Fe–Ni–RE self-fluxing alloy powders were flame sprayed onto 1045 carbon steel. The tribological properties of Fe–Ni–RE alloy coatings under dry sliding against SAE52100 steel at ambient conditions were studied on an Optimol SRV oscillating friction and wear tester in a ball-on-disc contact configuration. Effects of load and sliding speed on tribological properties of the Fe–Ni–RE coatings were investigated. The worn surfaces of the Fe–Ni–RE alloy coatings were examined with a scanning electron microscopy(SEM) and an energy-dispersive spectroscopy(EDS). It was found that the Fe–Ni–RE alloy coatings had better wear resistance than the SAE52100 steel. An adhered oxide debris layer was formed on the worn surface in friction. Area of the friction layer varied with variety of sliding speed, but did not vary with load. The oxide layer contributed to decreased wear, but increased friction. Wear rate of the material increased with the load, but dramatically decreased at first and then slightly decreased the sliding speed. The friction coefficient of the material was 0.40-0.58, and decreased slightly with the load, but increased with sliding speed at first, and then tended to be a constant value. Wear mechanism of the coatings was oxidation wear and a large amount of counterpart material was transferred to the coatings.  相似文献   

18.
Molybdenum disulfide nanosheets were prepared by monolayer restacking process. Results of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and scanning electron microscopy (SEM) showed that the obtained MoS2 nanosheets had a thickness about 30-70 nm. The tribological properties of the so-prepared MoS2 nanosheets were investigated on a MQ-800 four-ball tribometer. The results showed the base oil with MoS2 nanosheets had better friction reduction, wear resistance and extreme pressure than those with commercial micro-MoS2. The good tribological properties of MoS2 nanosheets were mainly ascribed to the surface effect and the dimension effect of nanoparticles. Moreover, the formation of MoO3 and FeSO4 complex film on the rubbed surface also played an important role in friction reduction and wear resistance.  相似文献   

19.
Very little research effort has been directed at development of models of erosion–corrosion of composite materials. This is because, in part, the understanding of the erosion–corrosion mechanisms of such materials is poor. In addition, although there has been a significant degree of effort in the development of models for erosion of MMCs, there are still difficulties in applying such models to the laboratory trends on erosion rate.In this paper, the methodology for mapping erosion–corrosion processes in aqueous slurries was extended to particulate composites. An inverse rule of mixtures was used for the construction of the erosion model for the particulate MMCs. The corrosion rate calculation was evaluated with reference to the matrix material.The erosion–corrosion maps for composites showed significant dependency on pH and applied potential. In addition, the corrosion resistance of the matrix material was observed to affect the regime boundaries. Materials maps were generated based on the results to show the optimum composite composition for exposure to the environment.  相似文献   

20.
Using a pin-on-disc apparatus, the wear behavior of Cu–15Ni–8Sn alloy aged for different periods of time at 400 °C was investigated under dry condition. The results showed the wear rate was inversely proportional to the hardness of the alloy, but the maximum wear resistance was not consistent with maximum hardness. The alloy contained about 10% (volume) cells precipitated along grain boundaries had the lowest wear rate. The friction coefficient was constant for different hardness. SEM micrographs of the debris and pin revealed that the removal process of surface material involved subsurface deformation, crack nucleation, crack propagation and delamination of the material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号