首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高温合金GH4169管材挤压工艺及组织分析   总被引:1,自引:0,他引:1  
对高温合金GH4169管材挤压成形进行了工艺研究,确定了GHll40管材挤压成形工艺参数,分析了GH4169管材挤压力能参数变化规律,分析了管材挤压对组织性能的影响。研究结果发现,GH4169管材挤压成形时必须严格控制坯料温度、模具预热温度、润滑方式、挤压速度、挤压比等工艺参数。  相似文献   

2.
高温合金GH4169管材包套挤压工艺及组织性能研究   总被引:1,自引:0,他引:1  
确定了高温合金GH4169管材挤压成形工艺参数,分析了GH4169管材挤压力的参数变化规律.分析了管材挤压对组织性能的影响.研究结果发现:合理的挤压工艺参数范围是坯料温度1080~1100℃,模具预热温度350~500℃,挤压比7~14,采用玻璃润滑剂.挤压管坯组织状态与挤压前组织状态相比,得到明显改善,挤压前平均晶粒尺寸是150 μm,挤压后平均晶粒尺寸是50 μm.采用包套挤压技术、组合凹模挤压技术、引导式管材包套挤压技术等对高温合金管材挤压成形进行了实验研究,加工出了合格的GH4169管材坯料.  相似文献   

3.
利用ABAQUS软件对高温合金GH3625热挤压成形过程进行数值模拟分析,获得坯料在不同工艺参数下的温度场、应力场的分布及挤压力变化情况。结果表明,通过GH3625热压缩模拟的数据计算所得挤压力的大小与模拟结果数值上接近,为进一步的试验研究及管材加工奠定了基础。适宜的挤压参数:坯料预热温度为1 180~1 200℃、挤压速度为50mm/s、模具预热温度为400℃。此外,实际生产中应该避免模具预热至350℃,以防止坯料出现过烧现象。  相似文献   

4.
采用数值模拟方法对TC4钛合金H形截面型材热挤压过程进行热力耦合分析,获得了坯料温度的分布情况及不同工艺参数对坯料温度的影响规律,结果表明:坯料温度进入稳定挤压阶段显著升高,产热与散热达到动态平衡状态;过渡圆角处坯料的温度明显高于坯料的其他部位;坯料的温升随挤压速度、摩擦因子、挤压比以及模具预热温度的增大而增大,但随坯料预热温度的增大而减小;而坯料的温降呈相反变化规律;最终获得优选挤压工艺方案。  相似文献   

5.
GH1140管材的热挤压成形   总被引:2,自引:0,他引:2  
采用适当的坯料温度、模具预热温度、润滑方式、挤压速度、挤压比等工艺参数,成功地挤压出高温合金GH1140管材。  相似文献   

6.
管材挤压工艺分析及实验研究   总被引:3,自引:0,他引:3  
对管材挤压成形进行了工艺分析及实验研究。确定了镁合金、7075铝合金、高温合金等几种材料管材挤压成形工艺参数,分析了管材挤压成形时变形力的变化规律。研究结果表明,管材挤压成形时必须严格控制坯料温度、模具预热温度、润滑方式、挤压速度、挤压比等工艺技术参数。以上工艺参数对挤压力均有不同程度的影响。  相似文献   

7.
基于DEFROM-3D有限元分析软件研究了热挤压工艺对活塞最高温度的影响.结果表明,随着坯料预热温度的增加,活塞最高温度先减小后增加;随着挤压速度或者模具预热温度或者摩擦系数的增加,活塞最高温度均增加;合理的挤压工艺参数为:坯料预热温度410~445℃,挤压速度1.0~3.5 mm/s,模具预热温度400~ 440℃,摩擦系数<0.325.  相似文献   

8.
基于DEFORM-2D有限元平台,以INCONEL625难变形合金大型厚壁挤压管为研究对象,通过虚拟正交与回归分析,研究了工艺参数坯料预热温度(P)、模具预热温度(M)、挤压速度(V)、摩擦因子(F)、挤压比(λ)和模具几何结构参数凹模半角(β)、凹模圆角(R1,R2)、工作带长度(L)对该过程挤压力峰值和模口管材温度峰值的影响。结果表明,P,F,V,β,λ5个参数对挤压力峰值和模口管材温度峰值的影响较为显著;通过逐步回归法建立了挤压力峰值和模口管材温度峰值与上述5个主要参数之间的回归数学模型,并通过该回归数学模型以额定挤压力200 MN和模具出口管材最高温度1250℃为条件确定了5个主要参数的合理取值范围:F=0.01~0.02;V=100~200 mm/s;P=1000~1250℃;β=35°~50°;λ=4.5~7;在此基础上,建立了多个影响显著参数下的INCONEL625难变形合金大型厚壁管挤压极限图,并阐明了该挤压极限图的制作原理和应用。经验证,该挤压极限图是可行的。  相似文献   

9.
在6016铝合金本构方程研究的基础上,采用正交实验方法,运用有限元分析软件Hyperworks的HyperXtrude模块,模拟研究该铝合金挤压成形规律,优化了挤压工艺方案。结果表明:挤压温度随着挤压速度升高而升高,但高速挤压时可能出现型材金属过热甚至重熔问题。挤压温度随着坯料预热温度升高近似线性升高。挤压力随着预热温度的升高而降低,挤压力随着挤压速度的提高有所升高,但并不明显。挤压区压力严重不均匀,需提高润滑效果,减小摩擦造成的挤压力衰减。工艺优化得到金属流速均匀、型材变形小的工艺方案。  相似文献   

10.
以拐角长悬臂空心铝型材为例,使用Hyper Xtrude分析软件对其挤压过程进行数值模拟,设计正交试验研究了挤压速度、棒料预热温度、挤压筒预热温度、模具预热温度、棒料直径、棒料长度等工艺参数对型材出口截面流速均方差(SDV)和温度均方差(SDT)的影响规律。结果表明:通过极差分析及再次模拟确定最优方案为:挤压速度1 mm·s~(-1),棒料预热温度440℃,挤压筒预热温度420℃,模具预热温度400℃,棒料直径Φ150 mm,棒料长度450 mm,对应的SDV与SDT分别仅为1.3680和1.9130,保证挤出型材获得高的综合质量。通过方差分析得到挤压速度对SDV的影响度及棒料预热温度对SDT的影响度分别高达67.50%和76.41%,定量地表明挤压速度和棒料预热温度分别是影响型材外观质量和内部组织的最主要工艺参数。工厂挤压出的合格产品验证了最优方案的可靠性。  相似文献   

11.
对镁合金管材挤压成形进行了工艺实验研究,确定了其成形工艺参数,分析了镁合金管材挤压成形时变形力的变化规律和组织性能变化。研究结果表明,镁合金管材挤压成形时必须严格控制坯料温度、模具预热温度、润滑剂、挤压速度、挤压比等工艺技术参数。以上工艺参数对挤压力均有不同程度的影响。  相似文献   

12.
以某大型带筋薄壁铝型材为研究对象,基于BBD试验设计、响应曲面法以及有限元模拟仿真,建立了工作带出口处型材截面流速均方差、最大挤压力与设计变量的响应函数关系,开展了穿孔针挤压成形工艺优化。研究结果表明:挤压速度是影响大型带筋薄壁铝型材穿孔针挤压成形材料流速的均匀性和挤压力大小的最显著因素。挤压成形工艺优化后,最优坯料温度为509.2℃、最优模具温度为506.1℃、最优挤压筒温度为518.8℃、最优挤压速度为0.2 mm·s^(-1),所对应的铝型材流速范围为5.393~8.910 mm·s^(-1)、温度范围为509.1~510.3℃、最大挤压力为119.4 MN,获得了理想的材料流速与温度分布均匀性,型材圆筒部分和筋部组织均匀,晶粒大小形貌相近,并显著降低了挤压力,满足了实际生产需求。  相似文献   

13.
镁合金管材挤压工艺及组织性能研究   总被引:8,自引:0,他引:8  
对镁合金管材挤压成形进行了工艺实验研究,确定了其成形工艺参数,分析了镁合金管材挤压成形时变形力的变化规律和组织性能变化。研究结果表明,镁合金管材挤压成形时必须严格控制坯料温度、模具预热温度、润滑剂、挤压速度、挤压比等工艺技术参数。以上工艺参数对挤压力均有不同程度的影响。  相似文献   

14.
AZ31变形镁合金挤压成形工艺的研究   总被引:7,自引:0,他引:7  
选择AZ31变形镁合金,设计了实心棒材、矩形和圆形截面薄壁空心型材试样,对坯料加热、模具预热、润滑剂、挤压比、挤压速度及挤压力等工艺问题与工艺参数,进行了系统的试验研究,总结了成形规律和确定工艺参数的方法,对生产应用将起到重要的参考作用。  相似文献   

15.
以异形Ⅰ形截面不锈钢型材为研究对象,采用DEFORM-3D有限元软件系统对其热挤压成形过程进行数值模拟分析.研究了挤压稳态成形过程中挤压速度、摩擦系数、坯料预热温度等因素对不锈钢型材挤压过程的影响.计算结果表明,当挤压比为9、挤压速度为200mm/s、摩擦因子为0.3、模具预热温度为450℃、坯料预热温度为1050℃时,金属流动状况良好,材料的应力应交分布均匀,可有效提高模具的寿命,对指导实际生产具有积极的参考价值.  相似文献   

16.
方旭东  李阳  韩培德  夏焱  王岩  李莎 《轧钢》2015,32(4):27-29
利用60 000 kN卧式挤压机,研究了TG700C合金挤压过程中工艺参数对峰值挤压力的影响规律。结果表明:影响峰值挤压力的主要因素有坯料加热温度、模具温度、挤压比、挤压速度、润滑剂等;随着挤压比和挤压速度的提高,峰值挤压力升高;随着加热温度的提高,峰值挤压力下降;挤压力的变化规律与J·塞茹尔内模型的理论计算值一致;挤压后的管材内外表面无裂纹,表面质量很好,晶粒较均匀,晶粒度为6~8级,常温力学性能及硬度均满足ASME SA213M的标准要求。  相似文献   

17.
基于DEFORM-3D软件,分析了7075高强铝合金轿车发动机油管接头热挤压成形过程,揭示了工艺参数对热挤压成形过程中材料最高温度的影响.结果表明,随着挤压速度的增大,最高温度增大;随着坯料加热温度的升高,最高温度下降;随着摩擦系数的增大,最高温度增大;随着模具预热温度的增加,最高温度增加.合理的挤压工艺参数为:挤压速度2~8 mm/s;坯料加热温度390~450℃;摩擦系数<0.3;模具预热温度400~440℃.  相似文献   

18.
研究了AZ31B镁合金热挤压工艺与模具。实验结果表明:(1)经400℃×20h的均匀化退火后的AZ31B镁合金铸锭,在挤压温度380~400℃、挤压速度1.0~2.5m/min的工艺条件下,可以挤压出复杂断面的型材,证明其具有良好的热挤压性能。(2)模具结构形式影响挤压力的大小。  相似文献   

19.
镁合金AZ31B挤压成形工艺及模具研究   总被引:1,自引:0,他引:1  
研究了AZ31B镁合金热挤压工艺与模具.实验结果表明(1)经400℃×20 h的均匀化退火后的AZ31B镁合金铸锭,在挤压温度380~400℃、挤压速度1.0~2.5 m/min的工艺条件下,可以挤压出复杂断面的型材,证明其具有良好的热挤压性能.(2)模具结构形式影响挤压力的大小.  相似文献   

20.
《铸造技术》2016,(11):2500-2503
对汽车用AZ80合金进行挤压铸造,研究浇注温度、挤压压力、模具预热温度和保压时间对AZ80合金组织和力学性能的影响,并分析其作用机理。结果表明,AZ80合金的适宜挤压铸造工艺为:浇注温度700℃、挤压压力90MPa、模具预热温度为250℃、保压时间为25 s,在此工艺下的AZ80合金可以取得较好的强度和塑性结合;AZ80合金力学性能的提高,主要与挤压工艺参数调控合金晶粒大小和显微缺陷有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号