共查询到20条相似文献,搜索用时 78 毫秒
1.
为了提高融合图像的视觉感知效果,提出一种非下采样剪切波变换(Non-Subsampled Shear Transform,NSST)域红外和可见光图像感知融合方法.首先采用NSST将源图像分解为高频和低频分量;接着采用参数自适应脉冲耦合神经网络(Parameter Adaptive Pulse Coupled Neur... 相似文献
2.
传统的多尺度红外与可见光图像融合方法,所提取的图像特征固定,并不能很好的应用于各类复杂的图像环境,而深度学习可以自主选择合适图像特征,改良特征提取单一性问题,因此提出一种基于卷积神经网络与非下采样剪切波变换(NSST)相结合的红外与可见光图像融合方法。首先,用卷积神经网络提取红外目标与背景的二分类图,利用调频(FT)显著性检测算法对分类图进行精准分割,同时,利用NSST将源图像多尺度、多方向进行分解;其次,利用目标显著性结合自适应模糊逻辑算法进行低频子带融合,利用高频系数局部方差对比度方法进行高频子带融合;最后,通过NSST逆变换得到融合后图像。实验结果表明:相比于传统图像融合算法,该方法在信息熵、平均梯度、空间频率、互信息和交叉熵等多个客观评价指标上至少分别提高了0.01%、0.30%、1.43%、2.32%、1.14%。一定程度提高了融合图像对比度,丰富了背景细节信息,更有利于人眼识别,可以广泛的应用于光电侦察、光电告警、多传感器信息融合等光电信息领域。 相似文献
3.
为了克服当前的红外与可见光图像融合算法存在着目标不够突出、纹理细节丢失等现象,本文提出了一种基于高斯模糊逻辑和自适应双通道脉冲发放皮层模型(Adaptive Dual-Channel Spiking Cortical Model, ADCSCM)的红外与可见光图像融合算法。首先,使用非下采样剪切波变换(Non-Subsampled Sheartlet Transform, NSST)将源图像分解为低频和高频部分。其次,结合新拉普拉斯能量和(New Sum of Laplacian, NSL)与高斯模糊逻辑,设定双阈值来指导低频部分进行融合;同时,采用基于ADCSCM的融合规则来指导高频部分进行融合。最后,使用NSST逆变换进行重构来获取融合图像。实验结果表明,本文算法主观视觉效果最佳,并在互信息、信息熵和标准差3项指标上高于其他7种融合算法,能够有效突出红外目标、保留较多纹理细节,提高融合图像的质量。 相似文献
4.
针对在图像融合中存在边缘细节保留不够理想的问题,提出一种基于非下采样剪切波变换(NSST)与卷积神经网络图像融合框架(IFCNN)的红外可见光图像融合算法.首先将红外和可见光图像进行NSST分解.然后为了使低频子带图像更好地突出轮廓信息,使用相似性匹配的融合规则对图像进行融合;对高频子带图像使用IFCNN提取特征层,特... 相似文献
5.
为了将红外图像的全局信息与可见光图像的细节信息进行有效结合,进一步提高融合后图像的质量,提出了一种同时增强图像边缘细节和对比度的非下采样剪切波变换(NSST)域红外和可见光图像融合方法.首先,通过平移不变剪切波将图像分解成为低频子带与高频子带,通过全局显著性图分析图像的对比度信息;利用改进型局部显著度图分析图像局部边缘信息.针对不同频带系数,结合边缘信息和对比度信息对频带系数进行融合,最后,利用逆变换得到最终的融合图像.大量实验结果表明,本文方法在提高图像整体对比度的同时增强了图像的边缘细节表现能力,优于现有的基于小波变换,非下采样轮廓波变换(NSCT)和显著度图等几种图像融合方法. 相似文献
6.
针对红外与可见光图像具有不同的特点,提出一种新的基于非下采样剪切波变换(NSST)的红外与可见光图像融合算法.算法首先采用NSST将已配准的红外与可见光图像进行分解,得到低频子带图像和各尺度各方向的高频子带图像;然后对低频子带图像采用一种基于显著图的低频融合规则进行融合,而对高频子带图像的融合,结合人眼视觉特性,采用一种基于改进的区域对比度的融合规则;最后,对融合的低频子带图像和高频子带图像进行NSST逆变换得到融合图像.实验结果表明,该算法能够有效地综合红外与可见光图像中的重要信息,融合效果要优于一般的基于NSCT、NSST的图像融合方法. 相似文献
7.
利用non-subsampled contourlet transform(NSCT)对红外偏振与红外光强图像进行分解,得到源图像的低频子带和高频方向子带。通过对红外偏振和光强图像差异特征的分析,对低频选取局部能量和局部信息熵提取差异特征,然后利用模糊逻辑融合低频子带的不确定区域,利用特征差异驱动来融合低频子带的确定区域;对高频选取局部边缘信息保留量和局部方差提取差异特征,然后利用模糊逻辑融合高频方向子带的不确定区域,利用特征差异驱动来融合高频方向子带的确定区域。最后利用NSCT对高低频子带进行逆变换得到最后的融合图像。从而建立起基于模糊逻辑与特征差异驱动的红外偏振图像融合模型。实验仿真结果表明,该融合模型可融合源图像互补的差异特征,使其在目标识别和分类中具有一定的应用价值。 相似文献
8.
针对传统多尺度图像融合方法容易损失可见光图 像细节、弱化红外目标信息和降低图像对比度的 问题,基于二维经验模态分解(BEMD)和高斯模糊逻辑(GFL)的特性,提出了一种红 外与可见光 图像融合的算法。首先,使用BEMD对源图像进行分解,得到图像的本征模(高频成分)和 趋势项(低频 成分);其次,用GFL对趋势项进行恰当的融合,使用基于邻域特征的区域对比度法融合图 像的本征模; 最后,通过BEMD逆变换得到融合图像。实验结果表明,与传统的多尺度融合方法相比,在 主观上视觉上, 本文融合算法能够更有效地保留源可见光图像中的细节信息,并突出红外图像中的目标信息 ,提高融合图 像的质量;在客观评价指标上,本文融合算法的结果在信息熵(IE)、标准差(SD)、平均梯度(AG)、互 信息(MI)和空间频率(SF)5个客观指标上明显优于传统的多尺度融合方法。 相似文献
9.
针对红外与可见光图像需要实时融合的特点,提出一种降低算法复杂度的基于非降采样剪切波变换(Non-subsampled Shearlet Transform)和压缩感知域的红外与可见光图像融合算法。利用NSST算法对红外图像和可见光图像分别进行多尺度、多方向稀疏分解,分别得到低频系数和各带通方向子带系数。对低频子带系数采用基于目标特征的加权平均融合规则;压缩感知理论的测量矩阵采用哈达马阶快速沃尔什矩阵,对细节信息保留较多的各带通子带系数进行观测测量,得到更稀疏的各带通子带系数测量值,对此测量值采用基于区域方差选大的融合规则得到融合测量值,运用基于增广的拉格朗日乘子和交叠方向恢复算法对融合测量值进行重构得到近似精确的各带通子带融合系数,最后对低频子带融合系数和各带通方向子带融合系数执行NSST逆变换得到最终的融合图像。实验结果表明,该融合方法不仅可以保证融合清晰度,同时还可以缩短算法的运行时间。 相似文献
10.
11.
12.
13.
本文构筑的适应型模糊神经网络模型实现了神经网络的学习训练能力、模糊逻辑系统的仿人推理功能以及匹配寻踪的适应性技术的结合。以其对具有不确定性特征的机器视觉目标图像进行辨识处理,取得良好效果。 相似文献
14.
15.
16.
17.
提出一种基于Contourlet变换和模糊理论的红外与可见光图像融合算法。首先,对源图像进行Contourlet变换;随后对低频和高频的小波系数采用不同的融合规则,即低频部分采用基于模糊集的自适应加权融合方法,高频部分采用基于区域小波能量加权的方法;最后再通过contourlet逆变换,获得融合图像。实验结果表明该算法能够较好地保留源图像的细节信息,具有较好的视觉效果,是一种有效实用的方法。 相似文献
18.
19.
经典Retinex模型增强算法采用固定尺度高斯核平滑滤波,导致单一尺度Retinex无法进行全局有效增强,而多尺度Retinex权重系数选取困难,二者均不能满足视觉要求。针对以上问题,基于人眼视觉掩盖效应提出一种尺度变化高斯核平滑滤波的Retinex算法。首先利用人眼视觉掩盖效应的屏蔽函数检测像素邻域空间细节,依据像素区域细节信息丰富程度设计出尺度变化的高斯平滑滤波器,实现照度估计,最后对尺度变化高斯平滑滤波器实现提出实用方法。实验证明本文算法有效提高红外图像对比度,增强细节信息,在主观视觉效果和客观评价指标上整体优于修正对比度限制直方图均衡算法、单尺度Retinex、多尺度Retinex及平稳小波和Retinex增强算法。 相似文献
20.
基于人类视觉系统的融合图像质量评价方法的研究 总被引:1,自引:0,他引:1
在融合图像的质量评价方法中引入人眼的各种视觉特性,从而使客观计测的结果符合图像质量的主观评价,符合人眼的实际观看质量.讨论了一种新的基于人类视觉系统(HVS)的融合图像质量度量,该方法无需理想图像,同时,将质量评价与人的视觉结果直接关联.对多类图像的不同融合算法的质量评价表明该方法是一种实用、有效的图像融合质量评价方法. 相似文献