首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 212 毫秒
1.
Mouse complement component C1q is a serum glycoprotein which consists of six A chains, six B chains and six C chains. The three polypeptides are 223, 228, and 217 residues long, respectively, and are encoded by three genes. DNA probes for mouse C1q A, B, and C chains were hybridized to Southern blots of DNA obtained from various inbred mouse strains. On the basis of fragment length polymorphisms, two different alleles of each of the genes could be identified. The distribution of these alleles was determined in the BXD and LXPL recombinant inbred strain series. Comparison with previously reported strain distribution patterns shows that the genes encoding mouse C1q map to the same locus on distal chromosome 4. Overlapping clones spanning the entire gene cluster of C1q were isolated from genomic libraries using specific cDNA probes. The three genes C1qA, C1qB, and C1qC are closely arranged on a 19 kilobase stretch of DNA in the 5' to 3' orientation A-C-B. Each gene consists of two exons separated by one intron. Sequence comparison of C1q from three different species have shown that the B chains have the strongest similarity. Southern blot analysis of chromosomal DNA from 14 vertebrate species demonstrated highest similarity between the C1qB genes, followed by C1qC and finally C1qA.  相似文献   

2.
Nicotinamide N-methyltransferase (NNMT) catalyzes the N-methylation of nicotinamide and structurally related compounds. We cloned mouse liver NNMT cDNA to make it possible to test the hypothesis that large differences among strains in levels of hepatic NNMT activity might be associated with strain-dependent variation in NNMT amino acid sequence. Mouse liver NNMT cDNA was 1015 nucleotides in length with a 792 nucleotide open reading frame (ORF) that was 83% identical to the nucleotide sequence of the human liver NNMT cDNA ORF. The mouse liver cDNA encoded a 264 amino acid protein with a calculated Mr value of 29.6 kDa. NNMT cDNA ORF sequences were then determined in five inbred strains of mice with very different levels of hepatic NNMT enzymatic activity. Although multiple differences among strains in nucleotide sequence were observed, none altered encoded amino acids. cDNA sequences for C57BL/6J and C3H/HeJ mice, prototypic strains with "high" and "low" levels of hepatic NNMT activity, respectively, were then expressed in COS-1 cells. Both expression constructs yielded comparable levels of enzyme activity, and biochemical properties of the expressed enzyme, including apparent Km values for substrates and IC50 values for inhibition by N1-methylnicotinamide, were very similar to those of mouse liver NNMT. Growth and development experiments were then conducted, which demonstrated that, although at 8 weeks of age average hepatic NNMT activity in C57BL/6J mice was 5-fold higher than that in C3H/HeJ mice, activities in the two strains were comparable by 30 weeks of age--indicating strain-dependent variation in the developmental expression of NNMT in mouse liver. These observations will serve to focus future studies of strain-dependent differences in murine hepatic NNMT on the regulation of the enzyme activity during growth and development.  相似文献   

3.
The purpose of this study was to elucidate the genetic origin of minor histocompatibility (H) antigens. Toward this end common inbred mouse strains, distinct subspecies, and species of the subgenus Mus were examined for expression of various minor H antigens. These antigens were encoded by the classical minor H loci H-3 and H-4 or by newly identified minor H antigens detected as a consequence of mutation. Both minor H antigens that stimulate MHC class I-restricted cytotoxic T cells (Tc) and antigens that stimulate MHC class II-restricted helper T cells (Th) were monitored. The results suggested that strains of distinct ancestry commonly express identical or cross-reactive antigens. Moreover, a correlation between the lack of expression of minor H antigens and ancestral heritage was observed. To address whether the antigens found on unrelated strains were allelic with the sensitizing minor H antigens or a consequence of antigen cross-reactivity, classical genetic segregation analysis was carried out. Even in distinct subspecies and species, the minor H antigens always mapped to the site of the appropriate minor H locus. Together the results suggest: 1) minor H antigen sequences are evolutionarily stable in that their pace of antigenic change is slow enough to predate subspeciation and speciation; 2) the minor H antigens originated in the inbred strains as a consequence of a rare polymorphism or loss mutation carried in a founder mouse stock that caused the mouse to perceive the wild-type protein as foreign; 3) there is a remarkable lack of antigenic cross-reactivity between the defined minor H antigens and other gene products.  相似文献   

4.
5.
To further elucidate the extent of variation among Pneumocystis carinii obtained from different mammalian hosts, polymerase chain reaction (PCR) analysis of the genes encoding two antigens of P. carinii was done. Using primers based on the ferret P. carinii glycoprotein (gp)A gene and the rat P. carinii 45- to 55-kDa antigen gene, amplification was attempted with DNA isolated from P. carinii-infected ferret, rat, mouse, and human lungs. For both genes, amplification was successful only with P. carinii DNA isolated from the same host species from which the P. carinii gene was originally isolated. The presence of P. carinii DNA in each sample was documented by PCR using primers based on the conserved mitochondrial ribosomal RNA gene sequence. These results were confirmed for P. carinii gpA by Southern blot analysis using a labeled fragment of the ferret P. carinii gpA gene as a probe. Thus, in addition to the previously reported phenotypic variation among antigens of P. carinii, there is also genotypic variation of these same antigens.  相似文献   

6.
C57BL/6 mice preferentially generate cytolytic T lymphocytes (CTL) to a limited number of immunodominant minor antigens and associated immunogenic peptides when primed with H2-matched Balb.B spleen cells despite multiple minor histocompatibility (H) antigen differences. We have examined the complexity of dominant H antigens recognized by these CTLs to estimate the number of peptides associated with single antigens. Peptides eluted from Kb molecules of lymphoblasts from Balb.B and CXB recombinant inbred (RI) strains were tested for sensitization of RMA-S cells for lysis by short-term C57BL/6 CTL lines specific for Balb.B and CXB strains. Anti-Balb.B CTLs recognized four Kb-bound peptides; subsets of these peptides were recognized by anti-CXB CTLs when tested with peptides from the respective CXB strains. Single peptides segregated independently among the CXB strains, confirming that single peptides were encoded by independently segregating alleles. These peptides were expressed in diverse inbred mouse strains and were recognized preferentially by C57BL/6 CTLs stimulated by different inbred mouse strains. This set of peptides was subclassified by their capacity to sensitize targets when presented in unfractionated mixtures of Kb-bound peptides. The peptide associated with the previously classified dominant CTT-2 antigen was the only peptide to strongly sensitize RMA-S cells for lysis under these conditions. These results suggest that dominant peptides have a wide strain distribution and may have a distinct advantage over dominated peptides in binding to class I molecules and/or in presentation to CTLs.  相似文献   

7.
It is difficult to study gene expression in mammalian embryonic germ cells as PGCs constitute only a minor proportion of the mouse embryo. We have overcome this problem by using a novel combination of established molecular and transgenic approaches. A line of mice has been generated in which the cells of the germ lineage express the beta-galactosidase reporter gene during embryogenesis. Using this line, germ cells have been purified to near homogeneity from embryos at discrete stages during germline development by use of a stain for beta-gal activity and a fluorescence activated cell sorter. Subsequently, cDNA libraries have been constructed from each germ cell population using a modified lone-linker PCR strategy. These combined cDNA libraries represent genes expressed in PGCs during mammalian germline development. To facilitate a molecular genetic approach to studying mammalian germline development, these cDNA libraries will be pooled to form an arrayed, addressed reference embryonic germ cell cDNA library. In parallel with large-scale cDNA sequencing efforts; genes that are differentially expressed in germ cells will be identified by screening the reference library with probes generated by subtractive hybridization. Complementary DNAs identified using this approach will be analyzed by sequencing, database comparison, genomic mapping and in situ hybridization to ascertain the potential functional importance of each gene to germline development. In addition to providing a wealth of novel information regarding patterns of gene expression during mammalian germline development, these results will form the basis for future experiments to determine the function of these genes in this process.  相似文献   

8.
Murine coronaviruses such as mouse hepatitis virus (MHV) infect mouse cells via cellular receptors that are isoforms of biliary glycoprotein (Bgp) of the carcinoembryonic antigen gene family (G. S. Dveksler, C. W. Dieffenbach, C. B. Cardellichio, K. McCuaig, M. N. Pensiero, G.-S. Jiang, N. Beauchemin, and K. V. Holmes, J. Virol. 67:1-8, 1993). The Bgp isoforms are generated through alternative splicing of the mouse Bgp1 gene that has two allelic forms called MHVR (or mmCGM1), expressed in MHV-susceptible mouse strains, and mmCGM2, expressed in SJL/J mice, which are resistant to MHV. We here report the cloning and characterization of a new Bgp-related gene designated Bgp2. The Bgp2 cDNA allowed the prediction of a 271-amino-acid glycoprotein with two immunoglobulin domains, a transmembrane, and a putative cytoplasmic tail. There is considerable divergence in the amino acid sequences of the N-terminal domains of the proteins coded by the Bgp1 gene from that of the Bgp2-encoded protein. RNase protection assays and RNA PCR showed that Bgp2 was expressed in BALB/c kidney, colon, and brain tissue, in SJL/J colon and liver tissue, in BALB/c and CD1 spleen tissue, in C3H macrophages, and in mouse rectal carcinoma CMT-93 cells. When Bgp2-transfected hamster cells were challenged with MHV-A59, MHV-JHM, or MHV-3, the Bgp2-encoded protein served as a functional MHV receptor, although with a lower efficiency than that of the MHVR glycoprotein. The Bgp2-mediated virus infection could not be inhibited by monoclonal antibody CC1 that is specific for the N-terminal domain of MHVR. Although CMT-93 cells express both MHVR and Bgp2, infection with the three strains of MHV was blocked by pretreatment with monoclonal antibody CC1, suggesting that MHVR was the only functional receptor in these cells. Thus, a novel murine Bgp gene has been identified that can be coexpressed in inbred mice with the Bgp1 glycoproteins and that can serve as a receptor for MHV strains when expressed in transfected hamster cells.  相似文献   

9.
BACKGROUND: The early phases of the host immune response to xenografts are dominated by anti-donor antibodies. The immunological pathways responsible for mediating the host humoral responses to xenografts are largely unknown, and this report addresses the nature of the immunoglobulin genes controlling the host antibody response to xenografts. METHODS: cDNA libraries established from rat anti-hamster monoclonal antibodies and splenic lymphocytes from LEW rats rejecting hamster heart xenografts were used to clone, sequence, and identify the immunoglobulin genes responsible for encoding rat xenoantibodies to hamster heart grafts. Libraries for germline variable region heavy chain (VH) genes encoding the anti-hamster xenograft antibodies were established by genomic DNA cloning and analyzed by nucleotide sequencing. The frequency of Ig VH gene usage for controlling the antibody responses to hamster xenografts was examined by colony-filter dot hybridization. The nucleic acid structure of these genes was then compared to their genomic progenitors to identify the number and structural diversity expressed by the Ig VH genes used to mediate the response. RESULTS: Rat monoclonal antibodies selected for their ability to precipitate the rejection of hamster xenografts exclusively use a closely related group of VH genes. The VH genes used by these antibodies are restricted to a single family of germline genes (VHHAR) for which 15 family members have been identified. The frequency of VHHAR gene usage in splenic IgM-producing B cells from LEW rats rapidly expands from 0.8% in naive animals to 13% in recipients 4 days after xenotransplantation. cDNA libraries expressing VHHAR genes were established from splenic lymphocytes derived from naive or xenograft recipients at 4 and 21 days after transplantation. Examination of 20 cDNA clones revealed that the majority (75%) of these clones express VHHAR genes displaying limited somatic mutation. CONCLUSIONS: The use of a closely related group of Ig VH genes in a germline configuration to control the early humoral response to xenografts suggests that this response may represent the utilization of a primitive, T cell-independent pathway of antibody production by the graft recipients.  相似文献   

10.
11.
In rodents, the prolactin receptor is expressed as multiple isoforms with identical extracellular and membrane-proximal region sequences but with different 3' sequences, encoding different cytoplasmic regions, and different 5' untranslated region (UTR) sequences. These divergent sequences could be the result of multiple prolactin receptor genes or of a single gene which displays alternative promoter usage and 3'-exon splicing. To investigate the molecular basis for these observations, we have cloned and determined the organization of the mouse prolactin receptor gene. Genomic DNA cloning allowed the arrangement of promoters 1A, 1B, and 1C to be determined. 5'-RACE-PCR from mouse liver identified two novel 5' prolactin receptor sequences, indicating that the gene has at least five different promoters, four of which are active in liver. The remaining nonvariable 5' UTR is encoded by a separate exon (exon 2), while a further 11 coding exons follow, the last 4 of which are alternatively spliced to produce the four isoforms of the receptor. Functional units were found to be exon specific. Thus, the multiple prolactin receptor isoforms are the product of a single gene of >120 kb which displays multiple promoter usage and 3'-exon splicing.  相似文献   

12.
Salmonellae often have the ability to express two different flagellar antigen specificities (phase 1 and phase 2). At the cell level, only one flagellar phase is expressed at a time. Two genes, fliC, encoding phase-1 flagellin, and fljB, encoding phase-2 flagellin, are alternatively expressed. Flagellin genes from 264 serovars of Salmonella enterica were amplified by two phase-specific PCR systems. Amplification products were subjected to restriction fragment length polymorphism (RFLP) analysis by using endonucleases HhaI and HphI. RFLP with HhaI and HphI yielded 64 and 42 different restriction profiles, respectively, among 329 flagellin genes coding for 26 antigens. The phase-1 gene showed 46 patterns with HhaI and 30 patterns with HphI. The phase-2 gene showed 23 patterns with HhaI and 17 patterns with HphI. When the data from both enzymes were combined, 116 patterns were obtained: 74 for fliC, 47 for fljB, and 5 shared by both genes. Of these combined patterns, 80% were specifically associated with one flagellar antigen and 20% were associated with more than one antigen. Each flagellar antigen was divided into 2 to 18 different combined patterns. In the sample of strains used, determination of the phase-1 and phase-2 flagellin gene RFLP, added to the knowledge of the O antigen, allowed identification of all diphasic serovars. Overall, the diversity uncovered by flagellin gene RFLP did not precisely match that evidenced by flagellar agglutination.  相似文献   

13.
Recombinant Mycobacterium bovis BCG expressing foreign antigens represents a promising candidate for the development of future vaccines and was shown in several experimental models to induce protective immunity against bacterial or parasitic infections. Innate resistance to BCG infection is under genetic control and could modify the immune responses induced against an antigen delivered by such engineered microorganisms. To investigate this question, we analyzed the immune responses of various inbred strains of mice to recombinant BCG expressing beta-galactosidase. These experiments demonstrated that BALB/c mice developed strong antibody responses against BCG expressing beta-galactosidase under the control of two different promoters. In contrast, C57BL/6, C3H, and CBA mice produced high anti-beta-galactosidase antibody titers only when immunized with recombinant BCG expressing beta-galactosidase under the control of the pblaF* promoter, which induced the production of high levels of this antigen. This difference in mouse responsiveness to recombinant BCG was not due to innate resistance to BCG infection, since similar immune responses were induced in Ity(r) and Ity(s) congenic strains of mice. In contrast, the analysis of anti-beta-galactosidase antibody responses of H-2 congenic mice in two different genetic backgrounds demonstrated that H-2 genes are involved in the immune responsiveness to beta-galactosidase delivered by recombinant BCG. Together, these results demonstrate that immune responses to an antigen delivered by recombinant BCG are under complex genetic influences which could play a crucial role in the efficiency of future recombinant BCG vaccines.  相似文献   

14.
15.
The existence of transplantation antigens, in addition to those encoded by genes in the MHC, has been known for over half a century. The molecular identification of these additional minor histocompatibility (H) antigens lagged behind that of their MHC counterparts, largely because minor H antigens are recognised by T cells and not by antibodies. In the past year, however, new minor H antigens have been identified at both the genetic and protein level and include Uty, a second novel gene encoding a male-specific epitope in mice, a novel autosomal gene encoding each of the H-13 alleles of mice, and a second male-specific epitope encoded by the SMCY gene.  相似文献   

16.
17.
BACKGROUND: The identification of tumor-associated antigens and the cloning of DNA sequences encoding them have enabled the development of anticancer vaccines. Such vaccines target tumors by stimulating an immune response against the antigens. One method of vaccination involves the delivery of antigen-encoding DNA sequences, and a number of recombinant vectors have been used for this purpose. To optimize the efficacy of recombinant vaccines, we compared primary and booster treatment regimens that used a single vector (i.e., homologous boosting) with regimens that used two different vectors (i.e., heterologous boosting). METHODS: Pulmonary tumors (experimental metastases) were induced in BALB/c mice inoculated with CT26.CL25 murine colon carcinoma cells, which express recombinant bacterial beta-galactosidase (the model antigen). Protocols for subsequent vaccination used three vectors that encoded beta-galactosidase--vaccinia (cowpox) virus, fowlpox virus, naked bacterial plasmid DNA. Mouse survival was evaluated in conjunction with antibody and cytotoxic T-lymphocyte responses to beta-galactosidase. RESULTS: Heterologous boosting resulted in significantly longer mouse survival than homologous boosting (all P<.0001, two-sided). Potent antigen-specific cytotoxic T lymphocytes were generated following heterologous boosting with poxvirus vectors. This response was not observed with any of the homologous boosting regimens. Mice primed with recombinant poxvirus vectors generated highly specific antibodies against viral proteins. CONCLUSIONS: The poor efficacy of homologous boosting regimens with viral vectors was probably a consequence of the induction of a strong antiviral antibody response. Heterologous boosting augmented antitumor immunity by generating a strong antigen-specific cytotoxic T-lymphocyte response. These data suggest that heterologous boosting strategies may be useful in increasing the efficacy of recombinant DNA anticancer vaccines that have now entered clinical trials.  相似文献   

18.
MT-PVLT-10 transgenic mice express the large T-antigen of polyomavirus under the control of the mouse metallothionein-1 promoter. The males of this transgenic line developed testicular tumor and seminal vesicle engorgement at advanced ages. A novel partial cDNA was identified which hybridized to a 2.6 kilobase mRNA. The expression of this mRNA increased approximately two- to fifteen-fold in immortalized cell lines derived from testicular tumors as compared to similar cell lines derived from pre-adenomatous testes. The in vivo pattern of expression for this cDNA as well as its expression in various primary cultures and established cell lines derived from testis of MT-PVLT-10 mice is presented. Overlapping cDNA clones from liver, testes, and brain cDNA libraries containing the entire coding region for this novel cDNA have been isolated and sequenced. The coding region of this gene comprises 1179 nucleotides and predicts a polypeptide of 393 amino acids (calculated molecular mass 44,318). Motif analysis of the amino acid sequence has revealed that it contains several hydrophobic alpha-helices characteristic of transmembrane proteins.  相似文献   

19.
Simple-sequence tandem repeat sequences in the 3' UTR of interleukin 5 (IL5)-receptor gene of human and mouse are polymorphic in their length among humans and different strains of mice. In 20 different human Epstein-Barr virus (EBV)-transformed cell lines, six alleles of IL5R could be distinguished. In the mouse, three different alleles are found. With the human-specific IL5R tandem repeat marker in human-rodent somatic cell hybrids, the IL5R gene was mapped to human Chromosome (Chr) 3 p25-p26. With the mouse-specific IL5R tandem repeat sequence in recombinant inbred strains of mice, the Il5r gene was mapped to the distal part of mouse Chr 6 close to the Raf-1 locus.  相似文献   

20.
The use of hybridisation of synthetic oligonucleotides to cDNAs under high stringency to characterise gene sequences has been demonstrated by a number of groups. We have used two cDNA libraries of 9 and 12 day mouse embryos (24 133 and 34 783 clones respectively) in a pilot study to characterise expressed genes by hybridisation with 110 hybridisation probes. We have identified 33 369 clusters of cDNA clones, that ranged in representation from 1 to 487 copies (0.7%). 737 were assigned to known rodent genes, and a further 13 845 showed significant homologies. A total of 404 clusters were identified as significantly differentially represented (P < 0.01) between the two cDNA libraries. This study demonstrates the utility of the fingerprinting approach for the generation of comparative gene expression profiles through the analysis of cDNAs derived from different biological materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号