首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
传统的并行编译技术能够在编译期间进行相关性分析,有效地并行化循环程序,但是对于程序运行时潜在的并行性却无能为力.因此,并行编译技术必须使用实时依赖分析技术,尽可能挖掘循环级并行性.本文提出仿射依赖关系,消除了循环迭代依赖;基于投机并行思想,提出了SPAD方法.实例分析表明,SPAD是有效的.与LRPD和SPNT方法相比较,SPAD做了重要的改进,因此是更通用的投机并行化方案.  相似文献   

2.
3.
4.
5.
赵捷  赵荣彩  丁锐  黄品丰 《软件学报》2012,23(10):2695-2704
传统的分布存储并行编译系统大多是在共享存储并行编译系统的基础上开发的.共享存储并行编译系统的并行识别技术适合OpenMP代码生成,实现方式是将所有嵌套循环都按照相同的识别方法进行处理,用于分布存储并行编译系统必然会导致无法高效发掘程序的并行性.分布存储并行编译系统应根据嵌套循环结构的特点进行分类处理,提出适合MPI代码生成的并行识别技术.为解决上述问题,根据嵌套循环的结构和MPI并行程序的特点,提出了一种新的嵌套循环分类方法,并针对不同的嵌套循环分别提出了相应的并行识别技术.实验结果表明,与采用传统并行识别技术的分布存储并行编译系统相比,按照所提方法对嵌套循环进行分类,采用相应并行识别技术的编译系统能够更高效地识别基准程序中的并行循环,自动生成的MPI并行代码其性能加速比提高了20%以上.  相似文献   

6.
循环是程序中蕴含并行性最为丰富的一种结构,因此成为并行化编译最主要的对象.但循环内的过程调用严重妨碍了循环的数据相关性分析,使得循环语句潜在的大量并行性得不到开发.本文提出的循环嵌入方法使部分含过程调用循环语句的并行化成为可能,对部分用其它过程间分析技术也能开发其并行性的这一类循环语句采用循环嵌入方法,并行化开销低,并且分析更精确.采用循环嵌入方法还可降低程序由于多次过程调用带来的调度开销.这一方法在作者开发的自动并行化编译系统AFT(automaticPortrantransformer)中得到了实现,对Spec92测试程序包的试验结果表明了本文提出的方法是行之有效的.  相似文献   

7.
该文提出了一种将调用局部化技术应用于并行环境下面向对象语言的方法,文中详细讨论了该技术的适用条件以及如何通过该方法减少循环中的远程过程调用开销,该优化技术产首先将循环分离成多个包含有远程调用的循环,再将分离后的循环分离给循环中对象所在的处理器,最后,化简迭代空间,并且用消息传递来传输数据,这种优化对象分布和循环并行化之后进行,将函数调用局部化于处理器,通过这种优化,可以进一步挖掘循环中的任务并行性,降低计算复杂度,减少函数调用开销,尤其适合面向对象语言中对循环里小函数的优化,该技术已经在作者设计的Java自动并行化编译器JAPS-Ⅱ中实现,在实验中,利用这种优化技术得到了超线性性加速比。  相似文献   

8.
刘晓娴  赵荣彩  赵捷  徐金龙 《软件学报》2014,25(6):1154-1168
发掘DOACROSS 循环中蕴含的并行性,选择合适的策略将其并行执行,对提升程序的并行性能非常重要.流水并行方式是规则DOACROSS 循环并行的重要方式.自动生成性能良好的流水并行代码是一项困难的工作,并行编译器对程序自动并行时常常对DOACROSS 循环作保守处理,损失了DOACROSS 循环包含的并行性,限制了程序的并行性能.针对上述问题,设计了一种选择计算划分循环层和循环分块层的启发式算法,给出了一个基于流水并行代价模型的循环分块大小计算公式,并使用计数信号量进行并行线程之间的同步,实现了基于OpenMP 的规则DOACROSS 循环流水并行代码的自动生成.通过对有限差分松弛法(finite difference relaxation,简称FDR)的波前(wavefront)循环和时域有限差分法(finite difference time domain,简称FDTD)中典型循环以及程序Poisson,LU 和Jacobi 的测试,算法自动生成的流水并行代码能够在多核处理器上获得明显的性能提升,使用的流水分块大小计算公式能够较为精确地计算出循环流水并行时的最佳分块大小.自动生成的流水并行代码与基于手工选择的最优分块大小的流水并行代码相比,加速比达到手工选择加速比的89%.  相似文献   

9.
In compiling applications for distributed memory machines, runtime analysis is required when data to be communicated cannot be determined at compile-time. One such class of applications requiring runtime analysis is block structured codes. These codes employ multiple structured meshes, which may be nested (for multigrid codes) and/or irregularly coupled (called multiblock or irregularly coupled regular mesh problems). In this paper, we present runtime and compile-time analysis for compiling such applications on distributed memory parallel machines in an efficient and machine-independent fashion. We have designed and implemented a runtime library which supports the runtime analysis required. The library is currently implemented on several different systems. We have also developed compiler analysis for determining data access patterns at compile time and inserting calls to the appropriate runtime routines. Our methods can be used by compilers for HPF-like parallel programming languages in compiling codes in which data distribution, loop bounds and/or strides are unknown at compile-time. To demonstrate the efficacy of our approach, we have implemented our compiler analysis in the Fortran 90D/HPF compiler developed at Syracuse University. We have experimented with a multi-bloc Navier-Stokes solver template and a multigrid code. Our experimental results show that our primitives have low runtime communication overheads and the compiler parallelized codes perform within 20% of the codes parallelized by manually inserting calls to the runtime library  相似文献   

10.
11.
is paper presents a model for automatically parallelizing compiler based on C which consists of compile-time and run-time parallelizing facilities.The paper also describes a method for finding both intra-object and inter-object parallelism.The parallelism detection is completely transparent to users.  相似文献   

12.
马春燕  吕炳旭  叶许姣  张雨 《软件学报》2023,34(7):3022-3042
随着多核处理器的普及应用,针对嵌入式遗留系统中串行代码的自动并行化方法是研究热点.其中,针对具有非完美嵌套结构、非仿射依赖关系特征的复杂嵌套循环的自动并行化方法存在技术挑战.提出了一种基于LLVMPass的复杂嵌套循环的自动并行化框架(CNLPF).首先,提出了一种复杂嵌套循环的表示模型,即循环结构树,并将嵌套循环的正则区域自动转换为循环结构树表示;然后,对循环结构树进行数据依赖分析,构建循环内和循环间的依赖关系;最后,基于OpenMP共享内存的编程模型生成并行的循环程序.针对SPEC2006数据集中包含近500个复杂嵌套循环的6个程序案例,分别对其进行复杂嵌套循环占比统计和并行性能加速测试.结果表明,提出的自动并行化框架可以处理LLVMPolly无法优化的复杂嵌套循环,增强了LLVM的并行编译优化能力,且该方法结合Polly的组合优化,比单独采用Polly优化的加速效果提升了9%-43%.  相似文献   

13.
There are billions of lines of sequential code inside nowadays’ software which do not benefit from the parallelism available in modern multicore architectures. Automatically parallelizing sequential code, to promote an efficient use of the available parallelism, has been a research goal for some time now. This work proposes a new approach for achieving such goal. We created a new parallelizing compiler that analyses the read and write instructions, and control-flow modifications in programs to identify a set of dependencies between the instructions in the program. Afterwards, the compiler, based on the generated dependencies graph, rewrites and organizes the program in a task-oriented structure. Parallel tasks are composed by instructions that cannot be executed in parallel. A work-stealing-based parallel runtime is responsible for scheduling and managing the granularity of the generated tasks. Furthermore, a compile-time granularity control mechanism also avoids creating unnecessary data-structures. This work focuses on the Java language, but the techniques are general enough to be applied to other programming languages. We have evaluated our approach on 8 benchmark programs against OoOJava, achieving higher speedups. In some cases, values were close to those of a manual parallelization. The resulting parallel code also has the advantage of being readable and easily configured to improve further its performance manually.  相似文献   

14.
Current High Performance Computing (HPC) systems are typically built as interconnected clusters of shared-memory multicore computers. Several techniques to automatically generate parallel programs from high-level parallel languages or sequential codes have been proposed. To properly exploit the scalability of HPC clusters, these techniques should take into account the combination of data communication across distributed memory, and the exploitation of shared-memory models.In this paper, we present a new communication calculation technique to be applied across different SPMD (Single Program Multiple Data) code blocks, containing several uniform data access expressions. We have implemented this technique in Trasgo, a programming model and compilation framework that transforms parallel programs from a high-level parallel specification that deals with parallelism in a unified, abstract, and portable way.The proposed technique computes at runtime exact coarse-grained communications for distributed message-passing processes. Applying this technique at runtime has the advantage of being independent of compile-time decisions, such as the tile size chosen for each process. Our approach allows the automatic generation of pre-compiled multi-level parallel routines, libraries, or programs that can adapt their communication, synchronization, and optimization structures to the target system, even when computing nodes have different capabilities.Our experimental results show that, despite our runtime calculation, our approach can automatically produce efficient programs compared with MPI reference codes, and with codes generated with auto-parallelizing compilers.  相似文献   

15.
Generation of efficient parallel code is a major goal of a well-designed and developed parallelizing compiler. Another important goal is portability of both compiler system and the resulting output source codes. The various choices of current and future parallel computer architectures as well as the cost of developing a parallelizing compiler make portability a very important design goal. Since the design of parallelizing compilers is considerably move complex than designing conventional compilers, it is very important to achieve both efficiency and portability. To meet this dual goal, we have investigated the application of object oriented design to parallelizing compilers. Our parallelizing compiler design is based on abstractions of intermediate representations of loops and their class definitions. In this paper, we address the problem of loop parallelization and propose a framework where the loop parallelization process is divided into three phases and the optimization of loops is performed via a cyclic application of these three phases. The class of each phase is hierarchically derived from intermediate representations of loops. This facilitates the portability of the resulting parallelizing compilers. Furthermore, one of the phases uses a reservation table of hardware resources in order to obtain optimized parallel programs for given hardware resources. The validation of the proposed framework is given through the application of the object oriented design on an example program which is then parallelized efficiently.  相似文献   

16.
基于方法调用一般化模型的并行性分析   总被引:3,自引:0,他引:3  
该文给出了一种考虑了面向对象语言的多态和对象引用别名问题的对象方法间并行性的分析方法,这种方法用于面向对象语言并行化中的并行性分析,文中首先给出了一般化的方法调用模型,然后基于该模型给出了表达式化简,过程和过程间分析的算法,该算法可以求出变量的定义和使用集合,由于并行性分析,该文给出的简单例子即可以将该文的和相关的工作加以区别。其技术已经在作者研制的Java并行化编译器JAPS-Ⅱ中实现。  相似文献   

17.
A program that accesses an out-of-bound array element can cause unexpected behaviour that is unacceptable to safety-critical or security-critical systems. Two traditional compile-time approaches to array bound checking are flow analysis and program verification. This paper presents a new approach, IFV, that integrates flow analysis and program verification techniques. IFV is generally about as effective as program verification yet runs in about the same time as flow analysis. Its typical runtime is proportional to the product of the program size and the number of declared variables. IFV matches loops to templates, which represent commonly occurring loop patterns, to discover loop invariants automatically, which it then uses to strengthen flow analysis. With only seven templates, it handles many common array-access patterns. Patterns not verified by flow analysis are processed with verification techniques entirely automatically. This paper also describes a prototype IFV system that performs compile-time array bound checking for programs in a subset of C. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper we address the problem of partitioning nested loops with non-uniform (irregular) dependence vectors. Parallelizing and partitioning of nested loops requires efficient inter-iteration dependence analysis. Although many methods exist for nested loop partitioning, most of these perform poorly when parallelizing nested loops with irregular dependences. Unlike the case of nested loops with uniform dependences these will have a complicated dependence pattern which forms a non-uniform dependence vector set. We apply the results of classical convex theory and principles of linear programming to iteration spaces and show the correspondence between minimum dependence distance computation and iteration space tiling. Cross-iteration dependences are analyzed by forming an Integer Dependence Convex Hull (IDCH). Every integer point in this IDCH corresponds to a dependence vector in the iteration space of the nested loops. A simple way to compute minimum dependence distances from the dependence distance vectors of the extreme points of the IDCH is presented. Using these minimum dependence distances the iteration space can be tiled. Iterations within a tile can be executed in parallel and the different tiles can then be executed with proper synchronization. We demonstrate that our technique gives much better speedup and extracts more parallelism than the existing techniques.  相似文献   

19.
Compile-time and runtime analysis of active behaviors   总被引:9,自引:0,他引:9  
Active rules may interact in complex and sometimes unpredictable ways, thus possibly yielding infinite rule executions by triggering each other indefinitely. This paper presents analysis techniques focused on detecting termination of rule execution. We describe an approach which combines static analysis of a rule set at compile-time and detection of endless loops during rule processing at runtime. The compile-time analysis technique is based on the distinction between mutual triggering and mutual activation of rules. This distinction motivates the introduction of two graphs defining rule interaction, called Triggering and Activation Graphs, respectively. This analysis technique allows us to identify reactive behaviors which are guaranteed to terminate and reactive behaviors which may lead to infinite rule processing. When termination cannot be guaranteed at compile-time, it is crucial to detect infinite rule executions at runtime. We propose a technique for identifying loops which is based on recognizing that a given situation has already occurred in the past and, therefore, will occur an infinite number of times in the future. This technique is potentially very expensive, therefore, we explain how it can be implemented in practice with limited computational effort. A particular use of this technique allows us to develop cycle monitors, which check that critical rule sequences, detected at compile time, do not repeat forever We bridge compile-time analysis to runtime monitoring by showing techniques, based on the result of rule analysis, for the identification of rule sets that can be independently monitored and for the optimal selection of cycle monitors  相似文献   

20.
Ming Hsiang Huang  Wuu Yang 《Software》2020,50(10):1877-1904
OpenACC is a directive-based programming model which allows programmers to write graphic processing unit (GPU) programs by simply annotating parallel loops. However, OpenACC has poor support for irregular nested parallel loops, which are natural choices to express nested parallelism. We propose PFACC, a programming model similar to OpenACC. PFACC directives can be used to annotate parallel loops and to guide data movement between different levels of memory hierarchy. Parallel loops can be arbitrarily nested or be placed inside functions that would be (possibly recursively) called in other parallel loops. The PFACC translator translates C programs with PFACC directives into CUDA programs by inserting runtime iteration-sharing and memory allocation routines. The PFACC runtime iteration-sharing routine is a two-level mechanism. Thread blocks dynamically organize loop iterations into batches and execute the batches in a depth-first order. Different thread blocks share iterations among one another with an iteration-stealing mechanism. PFACC generates CUDA programs with reasonable memory usage because of the depth-first execution order. The two-level iteration-sharing mechanism is implemented purely in software and fits well with the CUDA thread hierarchy. Experiments show that PFACC outperforms CUDA dynamic parallelism in terms of performance and code size on most benchmarks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号