首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Intermediate volatility organic compounds (IVOCs) are an important class of secondary organic aerosol (SOA) precursors that have not been traditionally included in chemical transport models. A challenge is that the vast majority of IVOCs cannot be speciated using traditional gas chromatography-based techniques; instead they are classified as an unresolved complex mixture (UCM) that is presumably made up of a complex mixture of branched and cyclic alkanes. To better understand SOA formation from IVOCs, a series of smog chamber experiments was conducted with different alkanes, including cyclic, branched, and linear compounds. The experiments focused on freshly formed SOA from hydroxyl (OH) radical-initiated reactions under high-NO(x) conditions at typical atmospheric organic aerosol concentrations (C(OA)). SOA yields from cyclic alkanes were comparable to yields from linear alkanes three to four carbons larger in size. For alkanes with equivalent carbon numbers, branched alkanes had the lowest SOA mass yields, ranging between 0.05 and 0.08 at a C(OA) of 15 μg m(-3). The SOA yield of branched alkanes also depends on the methyl branch position on the carbon backbone. High-resolution aerosol mass spectrometer data indicate that the SOA oxygen-to-carbon ratios were largely controlled by the carbon number of the precursor compound. Depending on the precursor size, the mass spectrum of SOA produced from IVOCs is similar to the semivolatile-oxygenated and hydrocarbon-like organic aerosol factors derived from ambient data. Using the new yield data, we estimated SOA formation potential from diesel exhaust and predict the contribution from UCM vapors to be nearly four times larger than the contribution from single-ring aromatics and comparable to that of polycyclic aromatic hydrocarbons after several hours of oxidation at typical atmospheric conditions. Therefore, SOA from IVOCs may be an important contributor to urban OA and should be included in SOA models; the yield data presented in this study are suitable for such use.  相似文献   

2.
The Aerodyne aerosol mass spectrometer (AMS) was used to characterize physical and chemical properties of secondary organic aerosol (SOA) formed during ozonolysis of cycloalkenes and biogenic hydrocarbons and photo-oxidation of m-xylene. Comparison of mass and volume distributions from the AMS and differential mobility analyzers yielded estimates of "effective" density of the SOA in the range of 0.64-1.45 g/cm3, depending on the particular system. Increased contribution of the fragment at m/z 44, C02+ ion fragment of oxygenated organics, and higher "delta" values, based on ion series analysis of the mass spectra, in nucleation experiments of cycloalkenes suggest greater contribution of more oxygenated molecules to the SOA as compared to those formed under seeded experiments. Dominant negative "delta" values of SOA formed during ozonolysis of biogenics indicates the presence of terpene derivative structures or cyclic or unsaturated oxygenated compounds in the SOA. Evidence of acid-catalyzed heterogeneous chemistry, characterized by greater contribution of higher molecular weight fragments to the SOA and corresponding changes in "delta" patterns, is observed in the ozonolysis of alpha-pinene. Mass spectra of SOA formed during photooxidation of m-xylene exhibit features consistent with the presence of furandione compounds and nitro organics. This study demonstrates that mixtures of SOA compounds produced from similar precursors result in broadly similar AMS mass spectra. Thus, fragmentation patterns observed for biogenic versus anthropogenic SOA may be useful in determining the sources of ambient SOA.  相似文献   

3.
Water-soluble organic matter (WSOM) in fine particles (PM(2.5)) collected at one rural and three urban sites from the Southeastern Aerosol Research and Characterization network were characterized with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). These samples were also analyzed for a suite of molecular markers by Gas Chromatography-Mass Spectrometry (GC-MS) to assist in the interpretation of WSOM sources. The HR-ToF-AMS measurements allow a direct determination of the organic mass-to-carbon ratios (average ± 1σ = 1.93 ± 0.12) and hence the quantification of WSOM on the same filters used to close the aerosol mass budget. WSOM constitutes a major fraction of total PM(2.5) mass (26-42%) and organic mass (50-90%) at all sites. The concentrations of WSOM are substantially higher in summer, mainly due to enhanced production of biogenic secondary organic aerosol (SOA). WSOM is composed mainly of oxygenated species with average oxygen-to-carbon (O/C) ratio of 0.56 (± 0.08). Positive matrix factorization (PMF) of the high resolution mass spectra of WSOM identifies a less oxidized component (denoted as lOOA, O/C = 0.50) associated with biogenic SOA and a more oxidized component (denoted as mOOA, O/C = 0.60) associated with WSOM contributed by wood combustion. On average, lOOA accounts for 75 (± 13) % of WSOM in summer while mOOA accounts for 78 (± 21) % in winter, suggesting that WSOM in the southeastern U.S. is primarily contributed by SOA production from biogenic species in summer and by wood burning emissions in winter. This work also demonstrates the utility of HR-ToF-AMS for investigating the bulk chemical composition of WSOM as well as for evaluating its source contributions.  相似文献   

4.
Functionalization (oxygen addition) and fragmentation (carbon loss) reactions governing secondary organic aerosol (SOA) formation from the OH oxidation of alkane precursors were studied in a flow reactor in the absence of NO(x). SOA precursors were n-decane (n-C10), n-pentadecane (n-C15), n-heptadecane (n-C17), tricyclo[5.2.1.0(2,6)]decane (JP-10), and vapors of diesel fuel and Southern Louisiana crude oil. Aerosol mass spectra were measured with a high-resolution time-of-flight aerosol mass spectrometer, from which normalized SOA yields, hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios, and C(x)H(y)+, C(x)H(y)O+, and C(x)H(y)O(2)+ ion abundances were extracted as a function of OH exposure. Normalized SOA yield curves exhibited an increase followed by a decrease as a function of OH exposure, with maximum yields at O/C ratios ranging from 0.29 to 0.74. The decrease in SOA yield correlates with an increase in oxygen content and decrease in carbon content, consistent with transitions from functionalization to fragmentation. For a subset of alkane precursors (n-C10, n-C15, and JP-10), maximum SOA yields were estimated to be 0.39, 0.69, and 1.1. In addition, maximum SOA yields correspond with a maximum in the C(x)H(y)O+ relative abundance. Measured correlations between OH exposure, O/C ratio, and H/C ratio may enable identification of alkane precursor contributions to ambient SOA.  相似文献   

5.
Isoprene is a significant source of atmospheric organic aerosol; however, the secondary organic aerosol (SOA) formation and involved chemical reaction pathways have remained to be elucidated. Recent works have shown that the photo-oxidation of isoprene leads to form SOA. In this study, the chemical composition of SOA from the OH-initiated photo-oxidation of isoprene, in the absence of seed aerosols, was investigated through the controlled laboratory chamber experiments. Thermal desorption/tunable vacuum-ultraviolet photoionization time-of-flight aerosol mass spectrometry (TD-VUV-TOF-PIAMS) was used in conjunction with the environmental chamber to study SOA formation. The mass spectra obtained at different photon energies and the photoionization efficiency (PIE) spectra of the SOA products can be obtained in real time. Aided by the ionization energies (IE) either from the ab initio calculations or the literatures, a number of SOA products were proposed. In addition to methacrolein, methyl vinyl ketone, and 3-methyl-furan, carbonyls, hydroxycarbonyls, nitrates, hydroxynitrates, and other oxygenated compounds in SOA formed in laboratory photo-oxiadation experiments were identified, some of them were investigated for the first time. Detailed chemical identification of SOA is crucial for understanding the photo-oxidation mechanisms of VOCs and the eventual formation of SOA. Possible reaction mechanisms will be discussed.  相似文献   

6.
Diluted exhaust from a diesel engine was photo-oxidized in a smog chamber to investigate secondary organic aerosol (SOA) production. Photochemical aging rapidly produces significant SOA, almost doubling the organic aerosol contribution of primary emissions after several hours of processing at atmospherically relevant hydroxyl radical concentrations. Less than 10% of the SOA mass can be explained using a SOA model and the measured oxidation of known precursors such as light aromatics. However, the ultimate yield of SOA is uncertain because it is sensitive to treatment of particle and vapor losses to the chamber walls. Mass spectra from an aerosol mass spectrometer (AMS) reveal that the organic aerosol becomes progressively more oxidized throughout the experiments, consistent with sustained, multi-generational production. The data provide strong evidence that the oxidation of a wide array of precursors that are currently not accounted for in existing models contributes to ambient SOA formation.  相似文献   

7.
Secondary organic aerosol (SOA) resulting from the oxidation of organic species emitted by the Deepwater Horizon oil spill were sampled during two survey flights conducted by a National Oceanic and Atmospheric Administration WP-3D aircraft in June 2010. A new technique for fast measurements of cloud condensation nuclei (CCN) supersaturation spectra called Scanning Flow CCN Analysis was deployed for the first time on an airborne platform. Retrieved CCN spectra show that most particles act as CCN above (0.3 ± 0.05)% supersaturation, which increased to (0.4 ± 0.1)% supersaturation for the most organic-rich aerosol sampled. The aerosol hygroscopicity parameter, κ, was inferred from both measurements of CCN activity and from humidified-particle light extinction, and varied from 0.05 to 0.10 within the emissions plumes. However, κ values were lower than expected from chemical composition measurements, indicating a degree of external mixing or size-dependent chemistry, which was reconciled assuming bimodal, size-dependent composition. The CCN droplet effective water uptake coefficient, γ(cond), was inferred from the data using a comprehensive instrument model, and no significant delay in droplet activation kinetics from the presence of organics was observed, despite a large fraction of hydrocarbon-like SOA present in the aerosol.  相似文献   

8.
Diurnal variations of fossil secondary organic carbon (SOC) and nonfossil SOC were determined for the first time using a combination of several carbonaceous aerosol measurement techniques, including radiocarbon (1?C) determinations by accelerator mass spectrometry, and a receptor model (chemical mass balance, CMB) at a site downwind of Tokyo during the summer of 2007. Fossil SOC showed distinct diurnal variation with a maximum during daytime, whereas diurnal variation of nonfossil SOC was relatively small. This behavior was reproduced by a chemical transport model (CTM). However, the CTM underestimated the concentration of anthropogenic secondary organic aerosol (ASOA) by a factor of 4-7, suggesting that ASOA enhancement during daytime is not explained by production from volatile organic compounds that are traditionally considered major ASOA precursors. This result suggests that unidentified semivolatile organic compounds or multiphase chemistry may contribute largely to ASOA production. As our knowledge of production pathways of secondary organic aerosol (SOA) is still limited, diurnal variations of fossil and nonfossil SOC in our estimate give an important experimental constraint for future development of SOA models.  相似文献   

9.
Gas-particle partitioning theory is widely used in atmospheric models to predict organic aerosol loadings. This theory predicts that secondary organic aerosol (SOA) yield of an oxidized volatile organic compound product will increase as the mass loading of preexisting organic aerosol increases. In a previous work, we showed that the presence of model hydrophobic primary organic aerosol (POA) had no detectable effect on the SOA yields from ozonolysis of α-pinene, suggesting that the condensing SOA compounds form a separate phase from the preexisting POA. However, a substantial faction of atmospheric aerosol is composed of polar, hydrophilic organic compounds. In this work, we investigate the effects of model hydrophilic organic aerosol (OA) species such as fulvic acid, adipic acid, and citric acid on the gas-particle partitioning of SOA from α-pinene ozonolysis. The results show that only citric acid seed significantly enhances the absorption of α-pinene SOA into the particle-phase. The other two seed particles have a negligible effect on the α-pinene SOA yields, suggesting that α-pinene SOA forms a well-mixed organic aerosol phase with citric acid and a separate phase with adipic acid and fulvic acid. This finding highlights the need to improve the thermodynamics treatment of organics in current aerosol models that simply lump all hydrophilic organic species into a single phase, thereby potentially introducing an erroneous sensitivity of SOA mass to emitted OA species.  相似文献   

10.
The role of organic peroxides in secondary organic aerosol (SOA) formation from reactions of monoterpenes with O3 was investigated in a series of environmental chamber experiments. Reactions were performed with endocyclic (alpha-pinene and delta3-carene) and exocyclic (beta-pinene and sabinene) alkenes in dry and humid air and in the presence of the OH radical scavengers: cyclohexane, 1-propanol, and formaldehyde. A thermal desorption particle beam mass spectrometer was used to probe the identity and volatility of SOA components, and an iodometric-spectrophotometric method was used to quantify organic peroxides. Thermal desorption profiles and mass spectra showed that the most volatile SOA components had vapor pressures similar to pinic acid and that much of the SOA consisted of less volatile species that were probably oligomeric compounds. Peroxide analyses indicated that the SOA was predominantly organic peroxides, providing evidence that the oligomers were mostly peroxyhemiacetals formed by heterogeneous reactions of hydroperoxides and aldehydes. For example, it was estimated that organic peroxides contributed approximately 47 and approximately 85% of the SOA mass formed in the alpha- and beta-pinene reactions, respectively. Reactions performed with different OH radical scavengers indicated that most of the hydroperoxides were formed through the hydroperoxide channel rather than by reactions of stabilized Criegee intermediates. The effect of the OH radical scavenger on the SOA yield was also investigated, and the results were consistent with results of recent experiments and model simulations that support a mechanism based on changes in the [HO2]/[RO2] ratios. These are the first measurements of organic peroxides in monoterpene SOA, and the results have important implications for understanding the mechanisms of SOA formation and the potential effects of atmospheric aerosol particles on the environment and human health.  相似文献   

11.
Coupled partitioning, dilution, and chemical aging of semivolatile organics   总被引:3,自引:0,他引:3  
A unified framework of semi-volatile partitioning permits models to efficiently treat both semi-volatile primary emissions and secondary organic aerosol production (SOA), and then to treat the chemical evolution (aging) of the aggregate distribution of semi-volatile material. This framework also reveals critical deficiencies in current emissions and SOA formation measurements. The key feature of this treatment is a uniform basis set of saturation vapor pressures spanning the range of ambient organic saturation concentrations, from effectively nonvolatile material at 0.01 microg m(-3) to vapor-phase effluents at 100 mg m(-3). Chemical evolution can be treated by a transformation matrix coupling the various basis vectors. Using this framework, we show that semi-volatile partitioning can be described in a self-consistent way, with realistic behavior with respect to temperature and varying organic aerosol loading. The time evolution strongly suggests that neglected oxidation of numerous "intermediate volatility" vapors (IVOCs, with saturation concentrations above approximately 1 mg m(-3)) may contribute significantly to ambient SOA formation.  相似文献   

12.
2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C(5)H(12)O(6)S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM(2.5)) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM(2.5) collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA.  相似文献   

13.
According to the pseudo-ideal mixing assumption employed in practically all chemical transport models, organic aerosol components from different sources interact with each other in a single solution, independent of their composition. This critical assumption greatly affects modeled organic aerosol concentrations, but there is little direct experimental evidence to support it. A main experimental challenge is that organic aerosol components from different sources often look similar when analyzed with an aerosol mass spectrometer. We developed a new experimental method to overcome this challenge, using isotopically labeled compounds ((13)C or D) and a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). We generated mixtures of secondary organic aerosol (SOA) from isotopically labeled toluene and from unlabeled α-pinene and used the HR-ToF-AMS data to separate these different SOA types. We evaluated their interaction by comparing the aerosol mass yields of toluene and α-pinene when the SOA was formed in these mixtures to their yields when the SOA was formed in isolation. At equilibrium, our results are consistent with pseudo-ideal mixing of anthropogenic and biogenic SOA components from these chemically dissimilar precursors.  相似文献   

14.
Organosulfate species have recently gained attention for their potentially significant contribution to secondary organic aerosol (SOA); however, their temporal behavior in the ambient atmosphere has not been probed in detail. In this work, organosulfates derived from isoprene were observed in single particle mass spectra in Atlanta, GA during the 2002 Aerosol Nucleation and Characterization Experiment (ANARChE) and the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS). Real-time measurements revealed that the highest organosulfate concentrations occurred at night under a stable boundary layer, suggesting gas-to-particle partitioning and subsequent aqueous-phase processing of the organic precursors played key roles in their formation. Further analysis of the diurnal profile suggests possible contributions from multiple production mechanisms, including acid-catalysis and radical-initiation. This work highlights the potential for additional SOA formation pathways in biogenically influenced urban regions to enhance the organic aerosol burden.  相似文献   

15.
Isoprene epoxydiols (IEPOX), formed from the photooxidation of isoprene under low-NO(x) conditions, have recently been proposed as precursors of secondary organic aerosol (SOA) on the basis of mass spectrometric evidence. In the present study, IEPOX isomers were synthesized in high purity (>99%) to investigate their potential to form SOA via reactive uptake in a series of controlled dark chamber studies followed by reaction product analyses. IEPOX-derived SOA was substantially observed only in the presence of acidic aerosols, with conservative lower-bound yields of 4.7-6.4% for β-IEPOX and 3.4-5.5% for δ-IEPOX, providing direct evidence for IEPOX isomers as precursors to isoprene SOA. These chamber studies demonstrate that IEPOX uptake explains the formation of known isoprene SOA tracers found in ambient aerosols, including 2-methyltetrols, C(5)-alkene triols, dimers, and IEPOX-derived organosulfates. Additionally, we show reactive uptake on the acidified sulfate aerosols supports a previously unreported acid-catalyzed intramolecular rearrangement of IEPOX to cis- and trans-3-methyltetrahydrofuran-3,4-diols (3-MeTHF-3,4-diols) in the particle phase. Analysis of these novel tracer compounds by aerosol mass spectrometry (AMS) suggests that they contribute to a unique factor resolved from positive matrix factorization (PMF) of AMS organic aerosol spectra collected from low-NO(x), isoprene-dominated regions influenced by the presence of acidic aerosols.  相似文献   

16.
Secondary organic aerosol formation from isoprene photooxidation   总被引:3,自引:0,他引:3  
Recent work has shown that the atmospheric oxidation of isoprene (2-methyl-1,3-butadiene, C5H8) leads to the formation of secondary organic aerosol (SOA). In this study, the mechanism of SOA formation by isoprene photooxidation is comprehensively investigated, by measurements of SOA yields over a range of experimental conditions, namely isoprene and NOx concentrations. Hydrogen peroxide is used as the radical precursor, substantially constraining the observed gas-phase chemistry; all oxidation is dominated by the OH radical, and organic peroxy radicals (RO2) react only with HO2 (formed in the OH + H2O2 reaction) or NO concentrations, including NOx-free conditions. At high NOx, yields are found to decrease substantially with increasing [NOx], indicating the importance of RO2 chemistry in SOA formation. Under low-NOx conditions, SOA mass is observed to decay rapidly, a result of chemical reactions of semivolatile SOA components, most likely organic hydroperoxides.  相似文献   

17.
The formation of secondary organic aerosol (SOA) by reaction of ozone with monoterpenes (beta-pinene, delta3-carene, limonene, and sabinene) was studied on a short time scale of 3-22 s with a flow tube reactor. Online chemical analysis was performed with the Photoionization Aerosol Mass Spectrometer (PIAMS) to obtain molecular composition and the Nanoaerosol Mass Spectrometer (NAMS) to obtain elemental composition. Molecular composition data showed that dimers and higher order oligomers are formed within seconds after the onset of reaction, indicating that there is no intrinsic kinetic barrier to oligomer formation. Because oligomer formation is fast, it is unlikely that a large number of steps are involved in their formation. Therefore, ion distributions in the PIAMS spectra were interpreted through reactions of intermediates postulated in previous studies with monomer end products or other intermediates. Based on ion signal intensities in the mass spectra, organic peroxides appear to comprise a greater fraction of the aerosol than secondary ozonides. This conclusion is supported by elemental composition data from NAMS that gave C:O ratios in the 2.2-2.7 range.  相似文献   

18.
Ambient sampling was conducted in Riverside, California during the 2005 Study of Organic Aerosols in Riverside to characterize the composition and sources of organic aerosol using a variety of state-of-the-art instrumentation and source apportionmenttechniques. The secondary organic aerosol (SOA) mass is estimated by elemental carbon and carbon monoxide tracer methods, water soluble organic carbon content, chemical mass balance of organic molecular markers, and positive matrix factorization of high-resolution aerosol mass spectrometer data. Estimates obtained from each ofthese methods indicate that the organic fraction in ambient aerosol is overwhelmingly secondary in nature during a period of several weeks with moderate ozone concentrations and that SOA is the single largest component of PM1 aerosol in Riverside. Average SOA/OA contributions of 70-90% were observed during midday periods, whereas minimum SOA contributions of approximately 45% were observed during peak morning traffic periods. These results are contraryto previous estimates of SOAthroughout the Los Angeles Basin which reported that, other than during severe photochemical smog episodes, SOA was lower than primary OA. Possible reasons for these differences are discussed.  相似文献   

19.
Electrospray ionization high-resolution mass spectrometry (ESI HR-MS) was used to probe molecular structures of oligomers in secondary organic aerosol (SOA) generated in laboratory experiments on isoprene photooxidation at low- and high-NO(x) conditions. Approximately 80-90% of the observed products are oligomers and up to 33% by number are nitrogen-containing organic compounds (NOC). We observe oligomers with maximum 8 monomer units in length. Tandem mass spectrometry (MS(n)) confirms NOC compounds are organic nitrates and elucidates plausible chemical building blocks contributing to oligomer formation. Most organic nitrates are comprised of methylglyceric acid units. Other important multifunctional C(2)-C(5) monomer units are identified including methylglyoxal, hydroxyacetone, hydroxyacetic acid, and glycolaldehyde. Although the molar fraction of NOC in the high-NO(x) SOA is high, the majority of the NOC oligomers contain only one nitrate moiety resulting in a low average N:C ratio of 0.019. Average O:C ratios of the detected SOA compounds are 0.54 under the low-NO(x) conditions and 0.83 under the high-NO(x) conditions. Our results underscore the importance of isoprene photooxidation as a source of NOC in organic particulate matter.  相似文献   

20.
Secondary organic aerosol (SOA) formation from reactions of n-alkanes with OH radicals in the presence of NOx was investigated in an environmental chamber using a thermal desorption particle beam mass spectrometer for particle analysis. SOA consisted of both first- and higher-generation products, all of which were nitrates. Major first-generation products were sigma-hydroxynitrates, while higher-generation products consisted of dinitrates, hydroxydinitrates, and substituted tetrahydrofurans containing nitrooxy, hydroxyl, and carbonyl groups. The substituted tetrahydrofurans are formed by a series of reactions in which sigma-hydroxycarbonyls isomerize to cyclic hemiacetals, which then dehydrate to form substituted dihydrofurans (unsaturated compounds) that quickly react with OH radicals to form lower volatility products. SOA yields ranged from approximately 0.5% for C8 to approximately 53% for C15, with a sharp increase from approximately 8% for C11 to approximately 50% for C13. This was probably due to an increase in the contribution of first-generation products, as well as other factors. For example, SOA formed from the C10 reaction contained no first-generation products, while for the C15 reaction SOA was approximately 40% first-generation and approximately 60% higher-generation products, respectively. First-generation sigma-hydroxycarbonyls are especially important in SOA formation, since their subsequent reactions can rapidly form low volatility compounds. In the atmosphere, substituted dihydrofurans created from sigma-hydroxycarbonyls will primarily react with O3 or NO3 radicals, thereby opening reaction pathways not normally accessible to saturated compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号