首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abnormal growth of brain tissues is the real cause of brain tumor. Strategy for the diagnosis of brain tumor at initial stages is one of the key step for saving the life of a patient. The manual segmentation of brain tumor magnetic resonance images (MRIs) takes time and results vary significantly in low-level features. To address this issue, we have proposed a ResNet-50 feature extractor depended on multilevel deep convolutional neural network (CNN) for reliable images segmentation by considering the low-level features of MRI. In this model, we have extracted features through ResNet-50 architecture and fed these feature maps to multi-level CNN model. To handle the classification process, we have collected a total number of 2043 MRI patients of normal, benign, and malignant tumor. Three model CNN, multi-level CNN, and ResNet-50 based multi-level CNN have been used for detection and classification of brain tumors. All the model results are calculated in terms of various numerical values identified as precision (P), recall (R), accuracy (Acc) and f1-score (F1-S). The obtained average results are much better as compared to already existing methods. This modified transfer learning architecture might help the radiologists and doctors as a better significant system for tumor diagnosis.  相似文献   

2.
Many content-based image retrieval techniques like local binary pattern (LBP), local ternary pattern (LTP), local mesh peak valley edge pattern (LMePVEP), local mesh ternary pattern (LMeTerP), etc. extract texture features of an image for retrieval purposes. These techniques use fixed threshold to encode the input image and selection of such threshold value is not guided, that is, a chosen threshold may not be optimal for all images in the database. Moreover the performance of these texture-based static threshold algorithms also decreases if the input images are noisy. In this paper, a dynamic threshold value-based local mesh ternary pattern method is proposed in which the threshold value is chosen from the neighborhood of a central pixel using median of all pixels. The proposed modification reduces the overall effect of noise component and thereby improves the average retrieval rate (ARR) and average retrieval precision (ARP) of the original technique. The proposed modified technique has been compared with five other image retrieval approaches to prove its worthiness - the original local mesh ternary pattern technique (LMeTerP), a local ternary pattern technique (LTP), a Best ensemble technique, a multi-label classification CNN model and a CNN-based model of the proposed approach using a VIA ELCAP lung database and an Emphysema database. An improvement of 3.92% in ARR and 2.53% in ARP is observed over the basic local mesh ternary pattern method. Further the proposed modification has been combined with CNN concept and its results have also been analyzed.  相似文献   

3.
Computer Assisted Diagnosis (CAD) is an effective method to detect lung cancer from computed tomography (CT) scans. The development of artificial neural network makes CAD more accurate in detecting pathological changes. Due to the complexity of the lung environment, the existing neural network training still requires large datasets, excessive time, and memory space. To meet the challenge, we analysis 3D volumes as serialized 2D slices and present a new neural network structure lightweight convolutional neural network (CNN)-long short-term memory (LSTM) for lung nodule classification. Our network contains two main components: (a) optimized lightweight CNN layers with tiny parameter space for extracting visual features of serialized 2D images, and (b) LSTM network for learning relevant information among 2D images. In all experiments, we compared the training results of several models and our model achieved an accuracy of 91.78% for lung nodule classification with an AUC of 93%. We used fewer samples and memory space to train the model, and we achieved faster convergence. Finally, we analyzed and discussed the feasibility of migrating this framework to mobile devices. The framework can also be applied to cope with the small amount of training data and the development of mobile health device in future.  相似文献   

4.
Background: In medical image analysis, the diagnosis of skin lesions remains a challenging task. Skin lesion is a common type of skin cancer that exists worldwide. Dermoscopy is one of the latest technologies used for the diagnosis of skin cancer. Challenges: Many computerized methods have been introduced in the literature to classify skin cancers. However, challenges remain such as imbalanced datasets, low contrast lesions, and the extraction of irrelevant or redundant features. Proposed Work: In this study, a new technique is proposed based on the conventional and deep learning framework. The proposed framework consists of two major tasks: lesion segmentation and classification. In the lesion segmentation task, contrast is initially improved by the fusion of two filtering techniques and then performed a color transformation to color lesion area color discrimination. Subsequently, the best channel is selected and the lesion map is computed, which is further converted into a binary form using a thresholding function. In the lesion classification task, two pre-trained CNN models were modified and trained using transfer learning. Deep features were extracted from both models and fused using canonical correlation analysis. During the fusion process, a few redundant features were also added, lowering classification accuracy. A new technique called maximum entropy score-based selection (MESbS) is proposed as a solution to this issue. The features selected through this approach are fed into a cubic support vector machine (C-SVM) for the final classification. Results: The experimental process was conducted on two datasets: ISIC 2017 and HAM10000. The ISIC 2017 dataset was used for the lesion segmentation task, whereas the HAM10000 dataset was used for the classification task. The achieved accuracy for both datasets was 95.6% and 96.7%, respectively, which was higher than the existing techniques.  相似文献   

5.
The abnormal development of cells in brain leads to the formation of tumors in brain. In this article, image fusion based brain tumor detection and segmentation methodology is proposed using convolutional neural networks (CNN). This proposed methodology consists of image fusion, feature extraction, classification, and segmentation. Discrete wavelet transform (DWT) is used for image fusion and enhanced brain image is obtained by fusing the coefficients of the DWT transform. Further, Grey Level Co‐occurrence Matrix features are extracted and fed to the CNN classifier for glioma image classifications. Then, morphological operations with closing and opening functions are used to segment the tumor region in classified glioma brain image.  相似文献   

6.
BR Lee  JJ Hwang  JY Son 《Applied optics》2012,51(21):5236-5243
The compositions of images projected to a viewer's eyes from the various viewing regions of the viewing zone formed in one-dimensional integral photography (IP) and multiview imaging (MV) are identified. These compositions indicate that they are made up of pieces from different view images. Comparisons of the composite images with images composited at various regions of imaging space formed by camera arrays for multiview image acquisition reveal that the composite images do not involve any scene folding in the central viewing zone for either MV or IP. However, in the IP case, compositions from neighboring viewing regions aligned in the horizontal direction have reversed disparities, but in the viewing regions between the central and side viewing zones, no reversed disparities are expected. However, MV does exhibit them.  相似文献   

7.
Manual detection of small uncalcified pulmonary nodules (diameter <4 mm) in thoracic computed tomography (CT) scans is a tedious and error-prone task. Automatic detection of disperse micronodules is, thus, highly desirable for improved characterization of the fatal and incurable occupational pulmonary diseases. Here, we present a novel computer-assisted detection (CAD) scheme specifically dedicated to detect micronodules. The proposed scheme consists of a candidate-screening module and a false positive (FP) reduction module. The candidate-screening module is initiated by a lung segmentation algorithm and is followed by a combination of 2D/3D features-based thresholding parameters to identify plausible micronodules. The FP reduction module employs a 3D convolutional neural network (CNN) to classify each identified candidate. It automatically encodes the discriminative representations by exploiting the volumetric information of each candidate. A set of 872 micro-nodules in 598 CT scans marked by at least two radiologists are extracted from the Lung Image Database Consortium and Image Database Resource Initiative to test our CAD scheme. The CAD scheme achieves a detection sensitivity of 86.7% (756/872) with only 8 FPs/scan and an AUC of 0.98. Our proposed CAD scheme efficiently identifies micronodules in thoracic scans with only a small number of FPs. Our experimental results provide evidence that the automatically generated features by the 3D CNN are highly discriminant, thus making it a well-suited FP reduction module of a CAD scheme.  相似文献   

8.
Abnormal growth of cells in brain leads to the formation of tumors, which are categorized into benign and malignant. In this article, Co‐Active Adaptive Neuro Fuzzy Inference System (CANFIS) classification based brain tumor detection and its grading system is proposed. It has two phases as brain tumor segmentation and brain tissue segmentation. In brain tumor segmentation, CANFIS classifier is used to classify the test brain image into benign or malignant. Then, morphological operations are applied over the malignant image in order to segment the tumor regions in brain image. The K‐means classifier is used to classify the brain tissues into Grey Matter (GM), White Matter (WM) and Cerebro Spinal Fluid (CSF) regions as three different classes. Next, the segmented tumor is graded as mild, moderate or severe based on the presence of segmented tumor region in brain tissues.  相似文献   

9.
Lung cancer is the main cause of cancer related death owing to its destructive nature and postponed detection at advanced stages. Early recognition of lung cancer is essential to increase the survival rate of persons and it remains a crucial problem in the healthcare sector. Computer aided diagnosis (CAD) models can be designed to effectually identify and classify the existence of lung cancer using medical images. The recently developed deep learning (DL) models find a way for accurate lung nodule classification process. Therefore, this article presents a deer hunting optimization with deep convolutional neural network for lung cancer detection and classification (DHODCNN-LCC) model. The proposed DHODCNN-LCC technique initially undergoes pre-processing in two stages namely contrast enhancement and noise removal. Besides, the features extraction process on the pre-processed images takes place using the Nadam optimizer with RefineDet model. In addition, denoising stacked autoencoder (DSAE) model is employed for lung nodule classification. Finally, the deer hunting optimization algorithm (DHOA) is utilized for optimal hyper parameter tuning of the DSAE model and thereby results in improved classification performance. The experimental validation of the DHODCNN-LCC technique was implemented against benchmark dataset and the outcomes are assessed under various aspects. The experimental outcomes reported the superior outcomes of the DHODCNN-LCC technique over the recent approaches with respect to distinct measures.  相似文献   

10.
Classification of structural brain magnetic resonance (MR) images is a crucial task for many neurological phenotypes that machine learning tools are increasingly developed and applied to solve this problem in recent years. In this study binary classification of T1‐weighted structural brain MR images are performed using state‐of‐the‐art machine learning algorithms when there is no information about the clinical context or specifics of neuroimaging. Image derived features and clinical labels that are provided by the International Conference on Medical Image Computing and Computer‐Assisted Intervention 2014 machine learning challenge are used. These morphological summary features are obtained from four different datasets (each N > 70) with clinically relevant phenotypes and automatically extracted from the MR imaging scans using FreeSurfer, a freely distributed brain MR image processing software package. Widely used machine learning tools, namely; back‐propagation neural network, self‐organizing maps, support vector machines and k‐nearest neighbors are used as classifiers. Clinical prediction accuracy is obtained via cross‐validation on the training data (N = 150) and predictions are made on the test data (N = 100). Classification accuracy, the fraction of cases where prediction is accurate and area under the ROC curve are used as the performance metrics. Accuracy and area under curve metrics are used for tuning the training hyperparameters and the evaluation of the performance of the classifiers. Performed experiments revealed that support vector machines show a better success compared to the other methods on clinical predictions using summary morphological features in the absence of any information about the phenotype. Prediction accuracy would increase greatly if contextual information is integrated into the system. © 2017 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 27, 89–97, 2017  相似文献   

11.
We investigated whether a convolutional neural network (CNN) can enhance the usability of computer‐aided detection (CAD) of chest radiographs for various pulmonary abnormal lesions. The numbers of normal and abnormal patients were 6055 and 3463, respectively. Two radiologists delineated regions of interest for lesions and labeled the disease types as ground truths. The datasets were split into training, tuning, and testing as 7:1: 2. Total test sets were randomly selected in 1214 normal and 690 abnormal. A 5‐fold, cross‐validation was performed on our datasets. For the classification of normal and abnormal, we developed a CNN based on DenseNet169; for abnormal detection, The You Only Look Once (YOLO) v2 with DenseNet was used. Detection and classification of normal and five classes of diseases (nodule[s], consolidation, interstitial opacity, pleural effusion, and pneumothorax) on chest radiographs were analyzed. Our CNN model classified chest radiographs as normal or abnormal with an accuracy of 97.8%. For the results of the abnormal, F1 score, was 75.2 ± 2.28% for nodules, 55.0 ± 4.3% for consolidation, 78.2 ± 7.85% for interstitial opacity, 81.6 ± 2.07% for pleural effusion, and 70.0 ± 7.97% for pneumothorax, respectively. In addition, we conducted the experiments between our method and RetinaNet with only nodules. The results of our method and RetinaNet at cutoff‐0.5 in the free response operating characteristic curve were 83.45% and 80.55%, respectively. Our algorithm demonstrated viable detection and disease classification capacity and could be used for CAD of lung diseases on chest radiographs.  相似文献   

12.
13.
Brain tumor refers to the formation of abnormal cells in the brain. It can be divided into benign and malignant. The main diagnostic methods for brain tumors are plain X-ray film, Magnetic resonance imaging (MRI), and so on. However, these artificial diagnosis methods are easily affected by external factors. Scholars have made such impressive progress in brain tumors classification by using convolutional neural network (CNN). However, there are still some problems: (i) There are many parameters in CNN, which require much calculation. (ii) The brain tumor data sets are relatively small, which may lead to the overfitting problem in CNN. In this paper, our team proposes a novel model (RBEBT) for the automatic classification of brain tumors. We use fine-tuned ResNet18 to extract the features of brain tumor images. The RBEBT is different from the traditional CNN models in that the randomized neural network (RNN) is selected as the classifier. Meanwhile, our team selects the bat algorithm (BA) to optimize the parameters of RNN. We use five-fold cross-validation to verify the superiority of the RBEBT. The accuracy (ACC), specificity (SPE), precision (PRE), sensitivity (SEN), and F1-score (F1) are 99.00%, 95.00%, 99.00%, 100.00%, and 100.00%. The classification performance of the RBEBT is greater than 95%, which can prove that the RBEBT is an effective model to classify brain tumors.  相似文献   

14.
In medical imaging, segmenting brain tumor becomes a vital task, and it provides a way for early diagnosis and treatment. Manual segmentation of brain tumor in magnetic resonance (MR) images is a time‐consuming and challenging task. Hence, there is a need for a computer‐aided brain tumor segmentation approach. Using deep learning algorithms, a robust brain tumor segmentation approach is implemented by integrating convolution neural network (CNN) and multiple kernel K means clustering (MKKMC). In this proposed CNN‐MKKMC approach, classification of MR images into normal and abnormal is performed by CNN algorithm. At next, MKKMC algorithm is employed to segment the brain tumor from the abnormal brain image. The proposed CNN‐MKKMC algorithm is evaluated both visually and objectively in terms of accuracy, sensitivity, and specificity with the existing segmentation methods. The experimental results demonstrate that the proposed CNN‐MKKMC approach yields better accuracy in segmenting brain tumor with less time cost.  相似文献   

15.
A computer software system is designed for the segmentation and classification of benign and malignant tumor slices in brain computed tomography images. In this paper, we present a texture analysis methods to find and select the texture features of the tumor region of each slice to be segmented by support vector machine (SVM). The images considered for this study belongs to 208 benign and malignant tumor slices. The features are extracted and selected using Student's t‐test. The reduced optimal features are used to model and train the probabilistic neural network (PNN) classifier and the classification accuracy is evaluated using k fold cross validation method. The segmentation results are also compared with the experienced radiologist ground truth. Quantitative analysis between ground truth and segmented tumor is presented in terms of quantitative measure of segmentation accuracy and the overlap similarity measure of Jaccard index. The proposed system provides some newly found texture features have important contribution in segmenting and classifying benign and malignant tumor slices efficiently and accurately. The experimental results show that the proposed hybrid texture feature analysis method using Probabilistic Neural Network (PNN) based classifier is able to achieve high segmentation and classification accuracy effectiveness as measured by Jaccard index, sensitivity, and specificity.  相似文献   

16.
The only reliable and successful treatment of breast cancer is its detection through mammography at initial stage. Clusters of microcalcifications are important signs of breast cancer. Manual interpretation of mammographic images, in which the suspicious regions are indicated as areas of varying intensities, is not error free due to a number of reasons. These errors can be reduced by using computer-aided diagnosis systems that result in reduction of either false positives or true negatives. The purpose of the study in this paper is to develop a methodology for distinguishing malignant microcalcification clusters from benign microcalcification clusters. The proposed approach first enhances the region of interest by using morphological operations. Then, two types of features, cluster shape features and cluster texture features, are extracted. A Support Vector Machine is used for classification. A new set of shape features based on the recursive subsampling method is added to the feature set, which improves the classification accuracy of the system. It has been found that these features are capable of differentiating malignant and benign tissue regions. To investigate the performance of the proposed approach, mammogram images are taken from Digital Database for Screening Mammography database and an accuracy of 94.25% has been achieved. The experiments have shown that the proposed classification system minimizes the classification errors and is more efficient in correct diagnosis.  相似文献   

17.
Lung cancer is a dangerous disease causing death to individuals. Currently precise classification and differential diagnosis of lung cancer is essential with the stability and accuracy of cancer identification is challenging. Classification scheme was developed for lung cancer in CT images by Kernel based Non-Gaussian Convolutional Neural Network (KNG-CNN). KNG-CNN comprises of three convolutional, two fully connected and three pooling layers. Kernel based Non-Gaussian computation is used for the diagnosis of false positive or error encountered in the work. Initially Lung Image Database Consortium image collection (LIDC-IDRI) dataset is used for input images and a ROI based segmentation using efficient CLAHE technique is carried as preprocessing steps, enhancing images for better feature extraction. Morphological features are extracted after the segmentation process. Finally, KNG-CNN method is used for effectual classification of tumour > 30mm. An accuracy of 87.3% was obtained using this technique. This method is effectual for classifying the lung cancer from the CT scanned image.  相似文献   

18.
Digital matting for extracting foreground objects from an image is an important process to generate special effects in the movie industry and the broadcasting center. Recently, a digital matting algorithm has been developed to create an alpha matte using a well‐focused image generated from multiview images. However, this method could generate only a single‐view alpha matte, even though it used multiple cameras. In this article, we propose a new estimation scheme for multiview alpha mattes by sharing the trimap of the reference view. Furthermore, we use the motion vector to update the trimap for video matting. After we extract foreground objects from all view images, we composite the foreground objects with the corresponding background images captured in the same multiview camera arrangement. Experimental results demonstrate that multiview composite images can generate reasonably natural 3D views through the stereoscopic monitor. © 2010 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 20, 285‐293, 2010  相似文献   

19.
Tuberculosis (TB) is a highly infectious disease and is one of the major health problems all over the world. The accurate detection of TB is a major challenge faced by most of the existing methods. This work addresses these issues and developed an effective mechanism for detecting TB using deep learning. Here, the color space transformation is applied for transforming the red green and blue image to LUV space, where L stands for luminance, U and V represent chromaticity values of color images. Then, adaptive thresholding is carried out for image segmentation and various features, like coverage, density, color histogram, area, length, and texture features, are extracted to enable effective classification. After the feature extraction, the size of the features is reduced using principal component analysis. The extracted features are subjected to fractional crow search-based deep convolutional neural network (FC-SVNN) for the classification. Then, the image level features, like bacilli count, bacilli area, scattering coefficients and skeleton features are considered to perform severity detection using proposed adaptive fractional crow (AFC)-deep CNN. Finally, the inflection level is determined using entropy, density and detection percentage. The proposed AFC-Deep CNN algorithm is designed by modifying FC algorithm using self-adaptive concept. The proposed AFC-Deep CNN shows better performance with maximum accuracy value as 0.935.  相似文献   

20.
Heart disease (HD) is a serious widespread life-threatening disease. The heart of patients with HD fails to pump sufficient amounts of blood to the entire body. Diagnosing the occurrence of HD early and efficiently may prevent the manifestation of the debilitating effects of this disease and aid in its effective treatment. Classical methods for diagnosing HD are sometimes unreliable and insufficient in analyzing the related symptoms. As an alternative, noninvasive medical procedures based on machine learning (ML) methods provide reliable HD diagnosis and efficient prediction of HD conditions. However, the existing models of automated ML-based HD diagnostic methods cannot satisfy clinical evaluation criteria because of their inability to recognize anomalies in extracted symptoms represented as classification features from patients with HD. In this study, we propose an automated heart disease diagnosis (AHDD) system that integrates a binary convolutional neural network (CNN) with a new multi-agent feature wrapper (MAFW) model. The MAFW model consists of four software agents that operate a genetic algorithm (GA), a support vector machine (SVM), and Naïve Bayes (NB). The agents instruct the GA to perform a global search on HD features and adjust the weights of SVM and BN during initial classification. A final tuning to CNN is then performed to ensure that the best set of features are included in HD identification. The CNN consists of five layers that categorize patients as healthy or with HD according to the analysis of optimized HD features. We evaluate the classification performance of the proposed AHDD system via 12 common ML techniques and conventional CNN models by using a cross-validation technique and by assessing six evaluation criteria. The AHDD system achieves the highest accuracy of 90.1%, whereas the other ML and conventional CNN models attain only 72.3%–83.8% accuracy on average. Therefore, the AHDD system proposed herein has the highest capability to identify patients with HD. This system can be used by medical practitioners to diagnose HD efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号