首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
抗静电尼龙6/氧化锌晶须复合材料结构及性能研究   总被引:8,自引:0,他引:8  
用熔融共混法制备出尼龙6(PA6)/氧化锌晶须(ZnOw)复合材料,测试了PA6/ZnOw复合材料的电性能和力学性能,分析了影响机理,并借助傅立叶转换红外光谱(FT-IR)对复合材料的结构进行了表征。结果表明,随着ZnOw用量的增加,复合材料的表面电阻率和体积电阻率明显下降,下降幅度达到4个数量级;拉伸强度和硬度有所降低,而冲击强度出现先升后降的趋势。红外谱图显示,表面经处理过的ZnOw与尼龙基体发生了相互作用。  相似文献   

2.
锂电池用PEO基固态聚合物电解质研究进展及应用   总被引:1,自引:0,他引:1  
介绍了锂电池用聚氧化乙烯(PEO)基固态聚合物电解质的研究进展,论述了国内外在PEO改性、锂盐改进和制备PEO-无机复合聚合物电解质等三方面在提高其电导率、电化学稳定窗口和离子迁移数等性能进行的研究,综述了PEO基聚合物电解质的应用情况.  相似文献   

3.
将不同含量的单宁酸加入到聚环氧乙烷(PEO)和双三氟甲磺酰胺亚胺锂(LiTFSI)体系中,采用流延法来制备聚合物电解质膜.在氢键的作用下破坏PEO的结晶度来提高聚合物电解质的离子电导率.通过X射线衍射、差示扫描量热仪、热重分析仪、力学性能、表面形貌以及交流阻抗法等对聚合物电解质膜进行表征.结果表明,随着单宁酸(TA)含...  相似文献   

4.
采用熔融共混方法,制备了聚丙烯(PP)/聚四氟乙烯(PTFE)/尼龙6(PA6)复合材料,研究了PA6对PP复合材料力学性能和耐刮擦性能的影响.采用光学显微镜(OM)等手段对聚丙烯(PP)复合材料的耐刮擦行为进行了研究.结果表明,均聚PP与共聚PP相比,显示出了优异的耐刮擦性;PA6增加了PP复合材料的模量和强度,从而改善了材料的耐刮擦性能.  相似文献   

5.
不同高岭土填充PA6复合材料的性能研究   总被引:2,自引:1,他引:1  
采用熔融共混法制备了尼龙6/高岭土复合材料。研究了高岭土种类对复合材料的力学性能和加工流变性能的影响。结果表明,不同高岭土的加入使尼龙6的拉伸强度、弯曲强度和弯曲模量呈现先上升后下降的趋势,而冲击韧性呈下降趋势,但降幅较小。当用量为40份时,高岭土B填充的复合材料的性能最优。尼龙6/高岭土B复合材料的流变行为表现为假塑性,高岭土的加入使非牛顿指数减小;随温度升高,非牛顿指数变大,即非牛顿性减弱。  相似文献   

6.
原位聚合法制备PA6/KF复合材料   总被引:1,自引:0,他引:1  
采用原位聚合法制备了尼龙6/芳纶纤维(PA6/KF)复合材料。测试结果显示复合材料的拉伸强度从50.4 MPa提高到75.3 MPa,弯曲强度从41.1 MPa提高到72.1 MPa,热变形温度从44.5℃提高到83.1℃,而其冲击强度略有下降。SEM和DMA结果表明:尼龙6与芳纶纤维的界面粘结性好,复合材料的刚性得到提高。  相似文献   

7.
硼硅酸盐玻璃/Al2O3低温共烧陶瓷介电性能研究   总被引:1,自引:1,他引:0  
采用硼硅酸盐玻璃与氧化铝复合烧结制备了硼硅酸盐玻璃/Al2O3系低温共烧陶瓷基板材料,研究了玻璃含量以及玻璃中碱金属离子的含量对介电性能的影响.结果表明,该体系复合材料介电常数随碱金属离子的增加有所增大,复合材料介电常数符合李赫德涅凯对数法则,并随复合材料玻璃含量的增加而减小;复合材料介质损耗随碱金属离子的增加而显著增大.  相似文献   

8.
针对聚氧化乙烷(PEO)基固态电解质室温电导率较低的问题,通过在PEO中掺杂碳量子点(CQDs)作为填料,制备出不同CQDs含量的PEO基固态电解质,通过差示扫描量热分析技术、X射线衍射技术、扫描电子显微镜(SEM)技术等对其进行表征。结果表明:与PEO基固态电解质相比,掺杂CQDs的PEO基固态电解质的结晶度有明显的下降趋势;通过电化学阻抗测试(EIS)得出,PEO-LITFSI-5%CQDs固态电解质在室温下的离子电导率为2.01×10-5 S/cm,与PEO-LiTFSI-0%CQDs室温下的离子电导率相比,有明显的提升。  相似文献   

9.
采用熔融共混法制备出了尼龙-6/云母复合材料,研究了云母的加入量对复合材料力学性能的影响.结果表明:随着云母最的增加,尼龙-6/云母复合材料的冲击强度和拉伸强度均呈现出先增加后降低的趋势,而弯曲模量呈增加趋势;云母的加入有助于提高PA-6基体的热稳定性.  相似文献   

10.
介绍了超韧尼龙6的最新研究进展.主要介绍了几种超韧尼龙6的制备方法,其中马来酸酐接枝聚烯烃弹性体与尼龙6-无机纳米复合材料共混,能得到刚性、强度和韧性综合性能较好的超韧尼龙.  相似文献   

11.
Active and selective transport of alkali metal ions through the polyelectrolyte complex membranes consisting of [2-(diethylamino)ethyl]dextran hydrochloride, sodium carboxymethyldextran, and sulfate of poly(vinyl alcohol) have been investigated for the first time. The transport behavior was much affected by the hydrogen ion concentration. The driving force for the active transport of alkali metal ions was considered to be the hydrogen ion concentration. It was suggested that both the appropriate changes of chemical and physical properties of polyelectrolyte complex membrane and the affinity of the carrier fixed to the membrane for alkali metal ions controlled the active transport and selectivity through the membranes.  相似文献   

12.
以十六烷基三甲基溴化铵为有机插层剂对无机蒙脱土进行处理制备有机蒙脱土,采用原位聚合法制备尼龙-6/OMMT纳米复合材料,并在聚合过程中添加聚丁二烯合成PA-6/PB/OMMT纳米复合物.用FT-IR,XRD等对复合材料进行表征,并进行力学性能分析.实验表明,PB的加入能相对提高尼龙-6/OMMT的冲击强度,在PB含量为3%时,复合材料的拉伸性能和冲击性能较好.  相似文献   

13.
用十二烷基磺酸钠(SDS)将Na基蒙脱土(MMT)改性成有机蒙脱土(OMMT),采用原位聚合法制备了聚丙烯酸丁酯(PBA)/OMMT,并将其按适当比例添加到尼龙6(PA6)中。通过红外光谱仪、差示扫描量热仪等表征了OMMT、PBA/OMMT的结构,并检测了PA6/PBA/OMMT复合材料的力学性能。结果表明:添加5%的PBA/OMMT后,PA6/PBA/OMMT复合材料的拉伸强度提高了23.1%,缺口冲击强度的降低幅度有所减缓。  相似文献   

14.
A poly(ethylene oxide) (PEO) novolac‐type phenolic resin blend was prepared by the physical blending method. The modified novolac‐type phenolic resin with various PEO contents was used as a matrix precursor to fabricate carbon/carbon composites. The effect of the PEO/phenolic resin mixing ratio on the change of the density and of the porosity was studied. The flexural strength and interlaminar shear strength of the PEO/phenolic resin blend‐derived carbon/carbon composites were also investigated. The results show that the density of the PEO/phenolic resin blend‐derived carbon/carbon composites decreases with the PEO content. The X‐ray diffraction and Raman spectra studies showed that the carbon fiber in the samples will affect the growth of the ordered carbon structure. From SEM morphological observation, it is shown that the fracture surface of specimens is smooth. Also, there is less fiber pull‐out and fiber breakage on the fracture surface. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1609–1619, 2002; DOI 10.1002/app.10407  相似文献   

15.
In this article nano‐sized CdS crystal embedded in a PEO matrix was successfully prepared by a complex transformation method that is universal for preparing nanosized compounds containing transition metals. The size of embedded CdS particles was in the nanoscale from 2 to 10 nm determined by X‐ray diffusion. The nanosized CdS displayed the expected blue shift of the onset absorbance in the UV spectrum. The amount of blue shift depends upon the dipping time of the PEO–cadmium complex film in a sodium sulfide solution as well as its concentration. The most effective means for adjusting the size of CdS nanocrystals is to change the ratio of the oxygen along with the PEO chain to the cadmium ion in the complex film. The alkali salt in the film would contribute to the conductivity of the composite film. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1263–1268, 2002; DOI 10.1002/app.10459  相似文献   

16.
Complexation between poly(methacryloyloxyethyl trimethylammonium chloride), PMOTAC, and poly(ethylene oxide)-block-poly(sodium methacrylate), PEO-block-PMANa with MANa blocks with two different molecular weights has been investigated by light scattering, LS, viscosimetry and conductivity measurements. Owing to the PEO blocks the polyelectrolyte complexes are water-soluble particles. Effects of the ratio of the oppositely charged monomer units, the ionic strength of the solution, and solution pH have been studied. With the 1:1 mixing ratio stable polyelectrolyte complexes, PECs, with spherical shape were formed. When either the cationic or anionic component was in excess, charged non-stoichiometric complexes were formed. The complexes were stable also in solutions with comparatively high ionic strength, though stronger secondary aggregation was observed. By changing the solution pH the degree of dissociation of PEO-block-PMANa could be adjusted. In the vicinity of the pKa,average of PMAA, a minimum in the particle size and a maximum in the solution conductivity were observed. In solutions with lower pH, a typical self-complexation of PEO-block-PMAA was detected. Also, unexpected interactions between PMOTAC and the self-complexes of PEO-block-PMAA were observed.  相似文献   

17.
Summary Poly(ethylene oxide) (PEO) complexes were synthethized in methanol solution with five different alkali and earth alkali metal perchlorates. The intermolecular association was studied in solution with NMR and the structures of the formed solid complexes were analysed by IR-spectroscopy and X-ray-diffractometry. The conductivities of pure PEO and of the complexes were measured in vacuum and at room temperature. The variation in the properties of the samples is due to the association of PEO with charged ions.  相似文献   

18.
以聚季铵盐-22(PQ22)为络合剂,研究Cr(VI)的强化超滤行为,考察聚电解质/金属质量比、pH值及外加盐对PQ22-Cr(VI)络合体系截留系数和膜通量的影响,并研究了络合体系的浓缩、解络合和洗涤过程. 结果表明,当聚电解质/金属质量比为80及pH=9时,Cr(VI)截留系数大于0.9;外加Cl-, NO3-和SO42-使Cr(VI)截留系数降低,且SO42-比NO3-和Cl-的影响更大;控制聚电解质/金属质量比为80及pH=9,当浓缩因子为20时,Cr(VI)浓度从初始的5 mg/L浓缩至82.6 mg/L;对浓缩液解络合,控制Cl-浓度为0.15 mol/L,解络合率为71.1%,以Cl-溶液对解络合液进行洗涤,Cr(VI)洗脱率可达95.9%. 聚季铵盐-22可循环使用.  相似文献   

19.
Fir flour/SiO2 hybrid material (FSHM) was fabricated by Sol-gel infiltration process. The morphology and structure were investigated by Fourier transformed infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The composites of polyamide-6 (PA6) reinforced with FSHM were prepared by melt-mixing in twin-screw extruder. Part of FSHM was treated with γ-aminopropyltriethyoxysilane or epoxy resin as compatibilizer. Tensile strength of the composites with 25 wt.% of FSHM increased by almost 23.3% compared to that of pure PA6, whereas 59.8% increase in flexural strength was observed. Both compatibilizers improved interfacial adhesion between FSHM and PA6, resulting in increased impact strength of the composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号