首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
以升流式曝气生物滤池(UBAF)深度处理某焦化厂废水处理站二级未达标生化出水,在投加30%双氧水(H2O2/COD cr质量比为3)预处理后,并在气水比为3∶1,回流比为(0.5~1)∶1的运行条件下,系统对CODcr、NH3-N的平均去除率分别为53.1%、91.6%,系统出水CODcr和NH3-N浓度分别达到《污水综合排放标准》(GB8987—1996)的二级和一级排放标准.  相似文献   

2.
为了提高制药厂制药废水的可生化性,采用Fenton氧化法对其进行预处理,探讨了pH值、H2O2投加量、FeSO4投加量、反应时间等因素对COD去除率的影响.结果得到最佳反应条件为:pH值为1,H2O2(30%)投加量为0.25 mL(约833 mg/L),FeSO4.7H2O(0.3 mol/L)投加量为1 mL(约834 mg/L),反应时间为90 min,在此条件下,COD去除率可达21.97%,并用PAC作为混凝剂对此废水进行混凝实验,其对COD的去除率只有7.9%.两者相比,Fenton氧化法的效果好,可作为生化处理的预处理.  相似文献   

3.
微电解-Fenton工艺预处理难降解染料废水研究   总被引:9,自引:0,他引:9  
研究了微电解-Fenton工艺对难降解染料工业废水预处理效果,在提高染料废水可生化的同时实现有机物去除.通过对提高废水可生化性和有机物去除率因素的优选,确定了工艺的最佳技术参数和操作条件.结果表明:当PH=2,Fe/GAC体积比为1,反应时间60 min;H2O2采用连续投加方式,投加量为0.4%,pH=3,反应时间为30 min的条件下,可使废水的BOD5/COD质量浓度比由0.08提高到0.46,有机物(COD)去除率达75%以上.微电解-Fenton工艺能够有效改善难降解染料废水的可生化性和实现有机物的去除,并且操作简单,运行稳定,适宜于该废水的预处理.  相似文献   

4.
采用紫外光与降膜反应器技术来深度处理垃圾渗滤液,研究了H2O2与污染物质化学计量比、Fe2+与H2O2比、水流速度以及溶解O2对COD去除效率的影响关系.实验结果表明:在H2O2与污染物质化学计量比小于0.78时,COD去除率实验值比理论值要大,且随计量比增加而增加,而计量比大于0.78时,实验值比理论值小,且随计量比的增加而小幅增加;Fe2+与H2O2之间存在一最佳比,在比为15.2×10-3时COD去除率最大;水流速度在反应初期对COD去除率有一定影响,而在反应后期影响不大;在合适时间段采取曝气充氧方式可提高紫外光反应速度.  相似文献   

5.
针对颜料企业生产废水pH波动大,有机污染物成分复杂与可生化性差的问题,采用Fenton法对颜料废水进行了预处理实验研究.通过研究在不同实验条件下,Fenton试剂预处理该类废水的COD去除率及处理成本,验证了Fenton法处理颜料企业生产废水的可行性并得到Fenton法预处理此类废水的最优实验条件.实验结果表明,Fenton试剂处理该废水的COD去除率最高可达81%;在最优实验条件下,COD去除率为52%,处理成本为4.3元/t;Fenton法处理颜料企业生产废水的影响因素依次为H2O2∶Fe2+(mol∶mol)H2O2∶COD(g∶g)出水pH.  相似文献   

6.
UV/Fenton 法处理水中间甲酚的研究   总被引:2,自引:0,他引:2  
利用UV/Fenton法对模拟间甲酚废水进行了处理,研究了H2O2加入量、FeSO4加入量、pH、原水初始浓度等因素对COD去除率的影响.通过大量实验,确定了UV/Fenton法处理模拟间甲酚废水的最佳条件:常温下,pH为4.0,[H2O2]/[Fe2 ]=15,紫外灯照射时间为60 m in.当原水间甲酚浓度为251 mg/L时,在最佳反应条件下,经UV/Fenton法处理后COD去除率达80%左右.为达到更好的去除效果,在实验过程中加入TiO2,将COD去除率提高到90.5%,再用Ca(OH)2絮凝沉降,则COD去除率可达92.5%.  相似文献   

7.
研究了UV/H2O2,UV/O3和UV/H2O2/O3三种高级氧化体系处理乙烯装置所排放废碱液的特点。对于UV/H2O2体系,随着H2O2剂量的增加,COD的去除率以及处理液的可生化性(BOD:COD值)都随之增大,其性能也好于单独的H2O2体系,该体系在最佳条件下,COD的去除率达到68%,BOD/COD值从0.22增大到0.52;对于UV/O3体系,随着O3剂量的增加,COD的去除率及处理液的可生化性(BOD:COD值)也都随之增大,其性能也好于单独的O3体系。该体系在最佳条件下,COD的去除率达到54%,可生化性(BOD/COD值)从0.22增大到0.48;对于UV/H2O2/O3体系,其COD去除率比UV/O3体系高出22.0%。  相似文献   

8.
臭氧高级氧化技术处理酸性红B染料废水   总被引:4,自引:0,他引:4  
目的研究臭氧氧化技术处理酸性红B染料废水的效果,并探讨O3投加量、废水的初始pH值、H2O2和O3物质的量比对臭氧氧化处理酸性红B染料废水效果的影响.方法依据臭氧高级氧化的机理,在实验室反应器中通过实验考察在臭氧氧化处理酸性红B染料废水过程中,控制不同的O3投加量、废水的初始pH值、H2O2和O3物质的量比对酸性红B染料废水的色度和COD去除率的影响.结果在pH=7的条件下,单一臭氧氧化30 m in时,废水的色度和COD去除率分别为99.5%和37.9%;而废水的初始pH值控制在11左右时,COD去除率有较大提高.O3/H2O2氧化工艺,适宜的H2O2和O3物质的量比为0.6,氧化处理30 m in废水的COD去除率可达53.5%.结论O3高级氧化能够有效降解酸性红B染料废水,在臭氧反应体系中投加H2O2可以明显提高降解速率,缩短处理时间,降低O3耗量.  相似文献   

9.
以环氧丙烷废水为研究对象初步研究了H2O2预氧化作为预处理的最佳试验条件以及预氧化 生物接触氧化工艺处理效果.结果表明,H2O2预氧化法预处理环氧丙烷废水取得了良好效果,经预处理后,COD总去除率可达到92%,提高了废水的可生化性.  相似文献   

10.
Fenton氧化预处理苯胺废水的试验研究   总被引:2,自引:0,他引:2  
研究采用Fenton试剂预处理苯胺生产废水。以废水的COD去除率和苯胺去除率为指标,通过单因素试验对Fenton试剂氧化有机物的影响因素进行了分析。结果表明:在反应初始pH值为3.5、H2O2投加量为0.3ml/l、FeSO4·7H20投加量为0.4g/L、反应时间为80min的条件下,COD和苯胺的去除率分别达到54.8%和70.3%,改善了废水的可生化性,为后续的生化处理提供了有利条件。  相似文献   

11.
微波诱导过氧化氢氧化处理含油废水   总被引:1,自引:0,他引:1  
采用微波诱导氧化工艺(MIOP)处理含油废水,分别考察了活性炭种类、活性炭质量、H2O2体积、微波功率、微波辐射时间和pH等因素对处理效果的影响。实验结果表明,微波诱导氧化对含油废水COD的去除率达到86.8%。最佳处理工艺条件为:5 g活性炭与50 mL含油废水混合(固液质量比为1∶10),微波功率为480 W,辐射时间为4 min,H2O2体积为1.5 mL,FeSO4质量为0.07 g,pH为3。  相似文献   

12.
为探究电催化与芬顿(Fenton)协同技术对垃圾渗滤液深度处理的效果,通过试验方法,研究了电催化协同Fenton体系中电压(U)、水力停留时间(hydraulic retention time,HRT)、n(H_2O_2)/n(COD0)、n(H_2O_2)/n(Fe~(2+))对垃圾渗滤液去除率的影响,结果表明:电压是最主要的影响因素,在正交的基础上,通过单因素试验进一步得出了最佳电解条件为:U为5.5 V、HRT为50 min、n(H_2O_2)/n(COD0)为1.2、n(H_2O_2)/n(Fe~(2+))为2.0.试验对活性炭纤维(activated carbon fiber,ACF)/阴极比进行研究,发现比值为1∶2时,COD去除率最大.经吸附、Fenton、电解和电催化/Fenton的对比试验得出了ACF协同电催化降解有机物的途径.  相似文献   

13.
利用Box-BehnkenDesign(BBD)的响应面分析方法(RsM),对Fenton试剂法处理焦化废水4个主要因素:初始pH、H2O2用量、EH2O2]/[Fe^2+]摩尔比及反应时间的交互影响进行了分析,得到二次响应曲面模型,表明COD的去除率与各因素存在显著的相关性,以[Fe2+]:[H2O2。](摩尔比)和Hzoz投加量交互影响最为显著。以优化条件pH值为3.60、m(H2O2):re(CODcr)为1.95、[Fe2+]/EH2O2]摩尔比为1:7.43、反应时间30.8min,分别处理原水、缺氧池出水、二沉池出水,COD去除率达到44.60%、47.30%、56.59%.GC—MS分析Fenton氧化法处理前后水样,表明Fenton体系中产生大量的·OH自由基,主要对焦化废水中的挥发酚类和含氮杂环化合物类污染物苯环上的c—c键进行攻击后断裂,降解产物以石油烃类为主及部分的酯类、醇类等.好氧工艺和Fenton法对挥发酚类去除效果显著.  相似文献   

14.
湿式过氧化物氧化法处理乙酰乙酸乙酯废水   总被引:1,自引:0,他引:1  
采用湿式过氧化物氧化法(CWPO)处理乙酰乙酸乙酯废水,研究了反应温度、反应时间、催化剂和双氧水的用量对化学需氧量CODCr去除率的影响,并建立了相应的动力学模型。实验结果表明:在反应时间为150min,反应温度为90℃,铁用量为10mg·L-1,H2O2浓度31.5mg·L-1的条件下,1200mg·L-1左右的乙酰乙酸乙酯废水CODCr的去除率可达到98.5%以上。过氧化物湿式催化氧化乙酰乙酸乙酯的表观动力学方程为:-dCdt=6.205×exp(-17720/RT)C。  相似文献   

15.
以芬顿试剂、高锰酸钾为氧化剂氧化降解生活污水,通过测定COD、BOD5变化来比较氧化效果.在单因素实验的基础上,采用正交试验进行研究.芬顿试剂适宜的氧化条件:FeSO4·7H2O的投加量为3mmol/L,pH值为3,H2O2与Fe^2+的投加比为3:1,反应时间为60rain;高锰酸钾适宜的氧化条件:投加量为0.2mmol/L,pH值为2,反应时间为60min.研究表明:与高锰酸钾处理的效果相比,采用芬顿试剂,COD去除率可达80%,处理后废水的可生化性大大提高,为进一步的生化处理创造了良好的条件.  相似文献   

16.
草酸铁法处理亚麻染色废水的研究   总被引:1,自引:0,他引:1  
采用草酸铁法对亚麻染色废水进行了COD去除和脱色的研究.当pH=3.5,H2O2质量浓度为900mg/L,[K2C2O4]=[FeSO4]=1 mmol/L,水力停留时间为30 min时,亚麻染色废水的COD去除率和脱色率分别达到83%和99%以上;光照强度增大有利于亚麻染色废水的COD去除率和脱色率的提高;试剂加入次序不同对COD去除和脱色效果影响不大.结果表明:草酸铁法处理亚麻染色废水在技术上是可行的,处理效果良好稳定,出水COD平均值为73 mg/L,出水色度平均值为9.6倍,远低于我国纺织染整工业水污染物排放标准.  相似文献   

17.
采用铁碳微电解和Fenton法联合工艺处理实际印染废水,研究pH、反应时间、Fe/C体积比、H2O2浓度对实际印染废水脱色率及COD去除率的影响规律,并优化了联合技术的最佳工艺条件.试验结果表明:在短期时间内,Fe/C体积比和H2O2浓度对废水的处理效果影响最显著,最佳工艺条件为进水pH=4,Fe/C体积比为1∶1,H2O2的投加量20ml/L,反应时间30min,COD的去除率可以达到97%以上,色度的去除率达到99%以上.  相似文献   

18.
铁屑-Fenton法处理焦化含酚废水的研究   总被引:17,自引:0,他引:17  
炼钢厂的含酚废水经生化法处理后的COD,挥发酚并没达到排放标准,需要用铁屑-Fenton法对含酚废水进行深度处理。文中研究了pH,H2O2加入量,过滤时间,Fenton反应的持续时间等因素对COD去除效果的影响。通过正交试验确定最佳工艺条件;初始pH=2.4,H2O2加主量为120mmol/L,过滤时间为13min,Fenton反应的持续时间是60min。此条件下废水于再经絮凝处理,则出水COD为55mg/L,去除率为92%;挥发酚在0.5mg/L以下,去除率达97.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号