首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Effect of air temperature on drying kinetics, vitamin C, antioxidant capacity, total phenolic content (TPC), colour due to non-enzymatic browning (NEB) and firmness during drying of blueberries was studied. Drying curves were satisfactorily simulated with the Weibull model at 50, 60, 70, 80 and 90°C. The scale parameter (β) decreased as air temperature increased and an activation energy value of 57.85 kJ mol−1 was found. Important losses of vitamin C were reported during drying for all the working temperatures (p < 0.05). Although TPC decreased as air-drying temperature increased (p < 0.05) in comparison to its initial value, the dehydration at high temperatures (e.g., 90°C) presented high values for these antioxidant components. Discoloration due to NEB reaction was observed at all the working temperatures showing a maximum value at 90°C (p < 0.05). The radical scavenging activity showed higher antioxidant activity at high temperatures (80 and 90°C) than at low temperatures (50, 60 and 70°C) (p < 0.05). A tissue firmness reduction was observed with increasing temperature (p < 0.05).  相似文献   

2.
African breadfruit (ABF) seeds are underutilized plant resources, which have been reported to have high potential for novel food and industrial uses. The kinetics of moisture removal during air drying of the whole (WS) and dehulled (DS) seeds was studied at temperatures of 40–70 °C. Five empirical models were tested for predicting the experimental data. Drying of ABF seeds followed an exponential decay pattern, while drying predominantly took place during the falling rate periods. All the drying models predicted the experimental data above 90% accuracy while the Henderson–Pabis model gave the best fit (0.95 < r 2 < 0.99) at most of the experimental conditions. Effective moisture diffusivity, D eff, ranged from 3.65 to 7.15 × 10−9 m2/s and 3.95 to 6.10 × 10−9 m2/s for WS and DS, respectively. D eff showed significant dependence on the moisture content (p < 0.01). Rehydration capacity of DS was not significantly affected by drying temperature while that of WS increased with drying temperature.  相似文献   

3.
The vacuum-drying characteristics of ginger (Zingiber officinale R.) slices were investigated. Drying experiments were carried out at a constant chamber pressure of 8 kPa, and at four different drying temperatures (40 °C, 50 °C, 60 °C, and 65 °C).The effects of drying temperature on the drying rate and moisture ratio of the ginger samples were evaluated. Efficient model for describing the vacuum-drying process was chosen by fitting five commonly used drying models and a suggested polynomial was fitted to the experimental data. The effective moisture diffusivity and activation energy were calculated using an infinite series solution of Fick’s diffusion equation. The results showed that increasing drying temperature accelerated the vacuum-drying process. All drying experiments had only falling rate period. The goodness of fit tests indicated that the proposed two-term exponential model gave the best fit to experimental results among the five tested drying models. The average effective diffusivity values varied from 1.859 × 10−8 to 4.777 × 10−8 m2/s over the temperature range. The temperature dependence of the effective moisture diffusivity for the vacuum drying of the ginger samples was satisfactorily described by an Arrhenius-type relationship with activation energy value of 35.675 kJ/mol within 40–65 °C temperature range.  相似文献   

4.
Mathematical modelling was used to study the effect of process temperature on moisture and salt mass transfer during osmotic dehydration (OD) of jumbo squid with 6% (w v −1) NaCl at 75, 85 and 95 °C. The diffusion coefficients for moisture and salt increased with temperature. Based on an Arrhenius-type equation, activation energy values of 62.45 kJ mol−1 and 52.14 kJ mol−1 for moisture and salt, respectively, were estimated. Simulations of mass transfer for both components were performed according to Newton, Henderson and Pabis, Page, Weibull and logarithmic mathematical expressions. The influence of drying temperature on the kinetic parameters was also studied. Based on statistical tests, the Weibull and logarithmic models were the most suitable to describe the mass transfer phenomena during OD of jumbo squid.  相似文献   

5.
 The effect of ultrasound on mass transfer during cheese brining has been investigated. The rate of water removal and NaCl gain increased when ultrasound was applied in comparison with brining performed under static or dynamic conditions, suggesting that ultrasound improves both external and internal mass transfer. A simple diffusional model was developed to simulate mass transport during acoustic brining. Model parameters were estimated using experimental data from acoustic brining experiments carried out on cheese cylinders of 1.7×10–2 m radius and 3×10–2 m height at different temperatures (5, 15 and 20  °C). Effective water (D W) and NaCl (D S) diffusivities estimated using the proposed model ranged from 5.0×10–10 m2/s and 8.0×10–10 m2/s at 5  °C to 1.3×10–9 m2/s and 1.2×10–9 m2/s at 20  °C. Both D W and D S varied with temperature according to the Arrhenius equation. Through the proposed model, water losses and NaCl gains of the experiments used in the parameter identification were accurately simulated (average %var=98.2%) and also of two additional acoustic experiments carried out under different conditions of temperature (10  °C) and sample size and geometry [parallelepiped of (6×2.5×1.25)×10–2 m] to those used in the parameter identification (average %var=98.4%). Received: 22 September 1998 / Revised version: 20 November 1998  相似文献   

6.
The drying of pomegranate seeds was investigated at 40 °C, 50 °C and 60 °C with air velocity of 2 m/s. Prior to drying, seeds were osmodehydrated in 55 °Brix sucrose solution for 20 min at 50 °C. The drying kinetics and the effects of osmotic dehydration (OD) and air-drying temperature on antioxidant capacity, total phenolics, colour and texture were determined. Analysis of variance revealed that OD and air-drying temperature have a significant influence on the quality of seeds. Both anthocyanin and total phenolic contents decreased when air-drying temperature increased. The radical diphenylpicril-hydrazyl activity showed the lowest antioxidant activity at 60 °C. Both chromatic parameters (L*, C* and h°) and browning index were affected by drying temperatures, which contributed to the discolouring of seeds. The final product has 22%, 20% and 16% of moisture; 0.630, 0.478 and 0.414 of a w; 151, 141 and 134 mg gallic acid equivalent/100 g fresh matter (FM) of total phenolics; 40, 24, 20 mg/100 g FM of anthocyanins and 46%, 39% and 31% of antioxidant activity, for drying temperatures of 40 °C, 50 °C and 60 °C, respectively. In view of these results, the temperature of 40 °C is recommended as it has the lowest impact on the quality parameters of the seeds. Differential scanning calorimetry data provided complementary information on the mobility changes of water during drying. Glass transition temperature (Tg′) depends on moisture content and as consequence, on drying conditions. In fact, Tg′ of seeds dried at 60 °C (Tg′ = −21 °C) was higher than those dried at 50 °C (Tg′ = −28 °C) or 40 °C (Tg′ = −31 °C) and osmodehydrated seeds (Tg′ = −34 °C). During OD and drying process, the texture of seeds changed. The thickness of seeds shrank by 55% at 60 °C.  相似文献   

7.
The kinetics of colour and carotenoids degradation in jackfruit bulb slices was evaluated during hot air drying at 50, 60 and 70 °C. Visual colour as well as total carotenoids (TC) content was found to be influenced by the drying process. Tri-stimulus colour parameters such as Hunter L and b values decreased and a value increased during drying. The combination of Hunter L × b value was found to represent the colour change adequately. Degradation of TC and visual colour in terms of Hunter L × b value followed first-order reaction kinetics; however, zero-order reaction kinetics was found adequate to describe changes in total colour difference (TCD) and non-enzymatic browning (NEB). Dependence of the rate constant followed the Arrhenius relationship. The process activation energies (E a) for Hunter L × b value, TCD, NEB and TC were 29.96, 27.21, 27.48 and 55.61 kJ/mol, respectively. Higher E a for TC content indicated greater temperature sensitivity as compared with other colour parameters. Relationship of TC content and Hunter L × b value was found to be more consistent through regression analysis with R 2 ≥ 0.979.  相似文献   

8.
Peleg’s equation was used to study the effect of process parameters on kinetics of mass transfer in terms of solids gain and water loss during osmotic dehydration using 30–50% (w/w) sucrose solution at 30, 40 and 50 °C. The experimental data were successfully fitted employing Peleg’s equation with the coefficient of determination (R 2) higher than 0.88, the root mean square error, and the mean relative percentage deviation modulus (E) of less than 0.003% and 6.40% for all treatments, respectively. In all cases, initial mass transfer rate parameter (K 1) decreased significantly (p < 0.05) as the solution concentration and solution temperature increased suggesting a corresponding increase in the initial mass transfer rate. Initial mass transfer rate followed an Arrhenius relationship which showed that solids gain had the highest temperature sensitivity (E a = 21.93–33.84 kJ mol−1) during osmotic dehydration. Equilibrium mass transfer parameter (K 2) decreased significantly (p < 0.05) as solution concentration increased demonstrating that the equilibrium solid and water contents increased with increase in solution concentration. The equilibrium solid and water contents were also estimated adequately using Peleg’s equation (R 2 > 0.78). The results of this work allow estimating the kinetics of mass transfer during osmotic dehydration in order to obtain products with determined solid and water contents.  相似文献   

9.
The thin-layer drying characteristics of pomegranate arils were investigated at the temperature of 55, 65 and 75°C, and the thin-layer drying models were used to fit the drying data. The increase in drying air temperature resulted in a decrease in drying time. Five different thin-layer drying models were used to predict the drying characteristics. The Midilli et al. model showed a better fit to experimental drying data as compared to other models. Effective moisture diffusivities were calculated based on the diffusion equation for a spherical shape using Fick’s second law, and varied from 9.373 × 10−11 to 3.429 × 10−10 m2/s over the temperature range. Moisture diffusivity values increased as air temperature was increased. The dependence of moisture diffusivity on temperature was described by an Arrhenius-type equation. The activation energies of control and pre-treated samples were determined to be 49.7 and 40.1 kJ/mol, respectively.  相似文献   

10.
A novel, flexible sheet-like food formed by the high methoxyl pectin–sugar–acid gelation during drying of apple puree was investigated to characterize drying-related properties. Product volume was reduced by 68% over the process, and this shrinkage was successfully modeled by assuming the volume reduction equal to the volume of water evaporated. The sorption isotherm at 25 °C was determined, and a new expression for the moisture content, W, as a function of water activity, a w, of the type resulted as the most accurate for this J-shaped isotherm. The drying kinetics was studied at 50, 60, and 80 °C in a tray dryer. No constant drying rate period was found, and the drying curve was divided in high- and low-moisture zones. For high moistures, an internal–external mixed control diffusive model coupling mass and heat transfer was applied to obtain a mass transfer Biot number of 2.1. In the low-moisture zone, a diffusive, isothermal drying model for strict internal control was utilized. Diffusivities varied around 1 × 10–9 m2/s for high moistures and were about ten times lower at low moistures, although the activation energies were comparable (15,259 and 16,800 J/mol, respectively). The drying time at 60 °C was 6.67 h. The product scored four points out of five in a sensory evaluation of general acceptability.  相似文献   

11.
), Norway spruce (Picea abies) and Birch (Betula pubescens) was measured above fibre saturation point (FSP) using a computer tomography (CT) scanner and digital image processing. A test volume was selected in the interior part of the samples and the density changes were determined every 10 minutes. Two different drying schedules were used, which had two periods seperated by a climate step. Schedule I was conducted with constant dry bulb temperature and schedule II with constant wet bulb temperature. The climate in the first period, A, was equivalent to 16% equilibrium moisture content (EMC) and period B, 8% EMC. Tests with schedule I were run at 50 °C, 60 °C, 70 °C and 80 °C (dry bulb temperature) and with schedule II also at 50 °C, 60 °C, 70 °C and 80 °C (wet bulb temperature). The results showed that there was no difference between the moisture flux during period A from the test volume for the different species. Between the different temperatures no significant differences of the rate of density changes in the test volumes for the different species were found. Spruce reacted more slowly than pine and birch on the external climate step, but after a while the flux rate was equal to that for pine. Birch had a slightly lower flux, about 60% of the rate for pine and spruce in period B. The wood rays in softwood are probably the most important flow path. The different shape and size of the pits between the tracheids and the rays in pine and spruce may be one explanation why spruce reacted more slowly than pine. A receding front was also observed and, by image processing, the distance from the surface and the receding front were determined. The receding front was defined at a fixed density level, approx. 30 kg/m3 above FSP and it was assumed that the evaporation occurs at approximately the position of the receding front. The receding front took the position at 0.5–1 mm below the surface just after the beginning of the drying process. For pine and birch the distance from the surface to the front increased slowly, even after the climate step, but for spruce the distance to the front instantly increased to a new position. Spruce lost its liquid water at the edges first and after a few hours the distance to the front stabilized. At approximately 60% moisture content (MC) the liquid water continuity broke down and the drying entered the irreducible saturation phase. This transition phase is in between a heat transfer controlled phase of drying when liquid water moves with low resistance to an evaporation front and a diffusion-controlled phase below FSP.  相似文献   

12.
The aim of this research was to study the behaviour of the drying kinetics of pepino fruit (Solanum muricatum Ait.) at five temperatures (50, 60, 70, 80 and 90 °C). In addition, desorption isotherms were determined at 20, 40 and 60 °C over a water activity range from 0.10 to 0.90. The Guggenheim, Anderson and de Boer model was suitable to depict the desorption data. A monolayer moisture content from 0.10 to 0.14 g water g−1 d.m. was reported. The equations of Newton, Henderson–Pabis, Modified Page, Wang–Singh, Modified Henderson–Pabis, Logarithmic as well as standardised Weibull were tested for modelling drying kinetics. Besides, Fick’s second law model was used to calculate the water diffusion coefficient which increased with temperature from 2.55 to 7.29 × 10−10 m2 s−1, with estimated activation energy of 27.11 kJ mol−1. The goodness of fit of the models was evaluated using sum squared error and chi-square statistical tests. The comparison of the experimental moisture values with respect to the calculated values showed that the standardised Weibull model presented the best goodness of fit, showing that this equation is very accurate for simulating drying kinetics for further optimisation of drying times.  相似文献   

13.
In order to better understand inactivation of cells during a drying process, the inactivation kinetics of concentrated Lactobacillus paracasei ssp. paracasei (F19) was measured under stationary conditions for different combinations of water activities and temperatures in a water activity range of a w = 0.23–a w = 0.75 and temperatures between 4°C and 50°C. It was shown that the inactivation kinetics of the probiotic bacterium L. paracasei at moderate temperatures could, for all conditions, be formally described by a first-order reaction with activation energies that are much lower than for thermal inactivation (E a = 61 kJ/mol). With regard to the water activity, the reaction rate constants exhibit a maximum inactivation rate at intermediate water activity a w = 0.52. As this behavior has direct implications for the stability of cells in a drying process, the stationary data were used to model the inactivation during test vacuum drying processes, where both temperature and water activity dynamically change. It is shown that—depending on the drying rate—dynamic effects have to be taken into account when modeling the survival during drying. Nevertheless, the model based on stationary inactivation data is capable to predict the characteristics of inactivation during a drying process. Therefore, it can serve as basis to optimize the drying process with regard to maximum survival of cells. However, a further refinement of the model with regard to the drying rate is necessary.  相似文献   

14.
Foaming, reconstitution, and sensory attributes of foam-mat-dried plantain and cooking banana were investigated. Plantain and cooking banana pastes mixed with different concentrations (0.005%, 0.01%, 0.015%, and 0.02%) of glyceryl monostearate (GMS) were whipped, and the resulting foams were air dried at 60°C, 70°C, and 80°C. Physical, chemical, and sensory properties of fresh and reconstituted paste from plantain and cooking bananas were determined. Higher GMS concentration and longer whipping time resulted in lower foam densities. Generally, cooking banana foams showed lower foam density compared to plantain foam. Lower drying temperatures and concentration of GMS resulted in longer drying time. pH (4.41–4.80), titratable acidity (0.06–0.08), and water absorption capacity (56.75–64.02%) of the reconstituted pastes varied with commodity, drying temperature, and %GMS concentration. Fresh and reconstituted pastes showed comparable physical and chemical attributes, while the taste and sensory attributes of fresh plantain and cooking banana pastes were significantly (p < 0.05) better than those of reconstituted pastes.  相似文献   

15.
Isotherms of shiitake mushroom (Lentinus edodes) at 25 and 40°C were determined and drying kinetics of whole and sliced shiitake mushrooms were tested using a convective air drying method at different drying temperature of 40, 50, 60, and 70°C. The monolayer moisture contents of the mushroom were 7.23 and 5.44 g water/100 g of dry solids at 25 and 40°C, respectively. Both mushroom samples showed falling drying rate periods with increasing drying rates with increases in drying temperature, and the drying rate of the sliced mushrooms was faster than that of the whole mushrooms at the same drying conditions. The kinetic parameters for dehydration of the mushrooms were determined using the Newton model and the Classical diffusion model. Activation energy (E a ) values as determined using the Newton model were 22.58 and 20.48 kJ/mol for the whole and sliced mushrooms, respectively.  相似文献   

16.
The main aim of this work was to evaluate the effect of high-intensity ultrasound (US) on the drying kinetics of orange peel as well as its influence on the microstructural changes induced during drying. Convective drying kinetics of orange peel slabs were carried out at a relative humidity of 26.5 ± 0.9%, 40 °C and 1 m/s with (AIR+US) and without (AIR) ultrasound application. In order to identify the US effect on water transport, drying kinetics were analyzed by taking the diffusion theory into account. Fresh, AIR and AIR+US dried samples were analyzed using Cryo-Scanning Electron Microscopy. Results showed that the drying kinetics of orange peel were significantly improved by US application, which involved a significant (p < 0.05) improvement of mass transfer coefficient and effective moisture diffusivity. The effects on mass transfer properties were confirmed with microstructural observations. In the cuticle surface of flavedo, the pores were obstructed by the spread of the waxy components, this fact evidencing US effects on the air–solid interfaces. Furthermore, the cells of the albedo were disrupted by US, as it created large intercellular air spaces facilitating water transfer through the tissue.  相似文献   

17.
In the present study, response surface method (RSM) and genetic algorithm (GA) were used to study the effects of process variables like screw speed, rpm (x 1), L/D ratio (x 2), barrel temperature (°C; x 3), and feed mix moisture content (%; x 4), on flow rate of biomass during single-screw extrusion cooking. A second-order regression equation was developed for flow rate in terms of the process variables. The significance of the process variables based on Pareto chart indicated that screw speed and feed mix moisture content had the most influence followed by L/D ratio and barrel temperature on the flow rate. RSM analysis indicated that a screw speed > 80 rpm, L/D ratio > 12, barrel temperature > 80 °C, and feed mix moisture content > 20% resulted in maximum flow rate. Increase in screw speed and L/D ratio increased the drag flow and also the path of traverse of the feed mix inside the extruder resulting in more shear. The presence of lipids of about 35% in the biomass feed mix might have induced a lubrication effect and has significantly influenced the flow rate. The second-order regression equations were further used as the objective function for optimization using genetic algorithm. A population of 100 and iterations of 100 have successfully led to convergence the optimum. The maximum and minimum flow rates obtained using GA were 13.19 × 10−7 m3/s (x 1 = 139.08 rpm, x 2 = 15.90, x 3 = 99.56 °C, and x 4 = 59.72%) and 0.53 × 10−7 m3/s (x 1 = 59.65 rpm, x 2 = 11.93, x 3 = 68.98 °C, and x 4 = 20.04%).  相似文献   

18.
In this study, the drying behaviors of green bell peppers were examined in convection dryer. The study was carried out for 3 drying temperatures (55, 65, and 75°C) and for pre-treated samples with ethyl oleate solution against control samples. The pre-treated samples dried faster than the control ones. Drying time decreased with an increase of drying temperature. Rehydration ratio of the pre-treated samples was higher than control samples. Moisture transfer from green bell peppers was described by applying the Fick’s diffusion model and the effective moisture diffusivity (D eff ) was calculated. The D eff values for pre-treated and control samples varied between 0.705 and 2.618×10−9 m2/sec. Activation energy values for moisture diffusion ranged from 41.67 and 52.99 kJ/mol. Drying data was fitted to 4 thin-layer drying models, namely, Lewis, Henderson and Pabis, logarithmic, and Page. The best model, which best represented the green bell peppers drying, was logarithmic.  相似文献   

19.
Eucalyptus regnans resulted in a decrease in both area of internal checking and number of checks after drying. Grain orientation was significant in determining the extent of reduction. For tangential grain, checking decreased linearly with increasing temperature; for intermediate grain, checking was relatively constant to 70 °C before declining at 90 °C ; and for radial grain, checking increased at 50 and 70 °C before declining at 90 °C . At 90 °C , reduction in area of checking and number of checks averaged 89.8 and 53.3% respectively for tangential grain, 62.7 and 62.2% for intermediate grain and 69.1 and 53.9% for radial grain, a reduction overall of 75.1 and 56.2%. Shrinkage in 5 × 10 cm cross-sections was also modified by preheating such that increased shrinkage in board width and reduced shrinkage in board thickness tended to be associated with reduced checking. Since these relationships were largely irrespective of grain orientation, they were attributed to specimen geometry. However, the major factor in check reduction was an increase in the rate of moisture loss, or ostensible permeability. When the effect of rate of moisture loss was nullified in regression analysis, check reduction tended to be related to an increase in tangential shrinkage overall and a decrease in radial shrinkage, irrespective of grain orientation. There was little effect on check reduction in smaller sized material (5 × 5 and 2.5 × 10 cm cross-sections) through preheating, although initial checking in this material was very low by comparison with 5 × 10 cm cross-sections.
  相似文献   

20.
Picea abies ) and Scots pine (Pinus sylvestris) wood under conditions relevant in the high temperature drying process. This paper reports the experimental results obtained for creep in tension under drying conditions at temperatures 95–125 °C. The results are compared to other researchers' measurements of mechano-sorptive creep at conventional drying temperatures (up to 80 °C). Based on this comparison the effect of temperature on the perpendicular to grain mechano-sorptive creep compliance is quantified.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号