共查询到18条相似文献,搜索用时 46 毫秒
1.
基于概念扩充的文本过滤模型 总被引:7,自引:1,他引:7
该文在介绍文本过滤的背景及向量空间模型的同时,提出了基于语义词典对用户模板进行扩充的文本过滤模型,该模型首先对文本进行分析,把文本表示成向量空间中的向量形式,在形成用户初始模板之后,对用户模板进行同义词扩充,形成扩充后的用户模板,以此模板来进行文本过滤。在用户反馈的基础上,自适应地修改该模板,以适应用户变化的需求及改善系统过滤性能。实验表明,这样的确可以提高系统覆盖面,提高系统效率。 相似文献
2.
基于概念的文本过滤模型 总被引:8,自引:0,他引:8
当前,文本过滤技术基本上停留在关键词阶段,无法处理同义和概念之间的上下位关系,因此,准确率和召回率达到一定值后,无论如何改进算法也无法再取得突破进展。文章试图从语义的角度突破这个困境,对常识知识库HowNet在文本过滤中的应用,以及文本过滤中所涉及的关键技术,包括基于概念的文本表示方法、用户模板表示方法、文本过滤算法进行了研究和探讨。实验结果表明,基于概念的方法的确可以提高文本过滤的性能。 相似文献
3.
基于向量空间模型的过滤不良文本方法 总被引:10,自引:3,他引:10
就向量空间模型文本表示方法以及归一化技术对不良文本过滤性能的影响进行了研究,并基于平衡样本集和不平衡样本集分别进行了试验。试验和结果分析表明,Naive Bayes方法由于采用概率模型进行文本表示,在不平衡样本集上显示了较差的准确度,而基于向量空间模型进行文本表示的方法,如中心向最法(VSM)、支持向量机(SVM)等在平衡或非平衡样本上取得了较好的准确度,并用于过滤不良文本的文本内容安全监管中。 相似文献
4.
文本特征区域与文本过滤的匹配机制 总被引:3,自引:0,他引:3
为了根据用户的信息需求,在因特网上搜索相关文本,该文提出了一种文本过滤的匹配机制,其基本思想是:利用基于词典的概念扩张方法,改进用户模板。计算扩张的用户模板与文本的全局相似度,获取初步的过滤结果;在文本特征区域,进行标题、摘要段、首段和尾段等片断的局部相似度计算,以综合评价文本与用户模板的匹配情况。该方法可操作性强,效果明显。 相似文献
5.
传统的向量空间过滤模型通常是提取字、词、短语等作为特征项,这样做的缺点是没有考虑文本的语义信息。文章提出了利用知网对向量空间模型的文本向量进行同义词消除的过滤方法。该方法比传统的单纯基于关键词匹配的方法更精确地体现了文本之间的相似度,提高了过滤性能,同时也降低了向量空间的维数,减少了计算量,提高了过滤的效率,实验结果表明基于该文的过滤方法确实提高了系统的性能。 相似文献
6.
基于WordNet概念向量空间模型的文本分类 总被引:5,自引:0,他引:5
文章提出了一种文本特征提取方法,以WordNet语言本体库为基础,以同义词集合概念代替词条,同时考虑同义词集合间的上下位关系,建立文本的概念向量空间模型作为文本特征向量,使得在训练过程中能够提取出代表类别的高层次信息。实验结果表明,当训练文本集合很小时,方法能够较大地提高文本的分类准确率。 相似文献
7.
基于混合模式的文本过滤模型 总被引:15,自引:1,他引:15
林鸿飞 《计算机研究与发展》2001,38(9):1127-1131
文本过滤旨在帮助用户处理自己感兴趣的文本,提出了基于混合模式的文本过滤模式,其基本思想是将基于内容的过滤方法和合作过滤方法结合起来,给出了用户评沪的权威性和一致性度是,以便更好地运用用户的评注信息,在此基础上,结合用户的个人兴趣,给出了文硒特征抽取机制、文本推荐机制、文本与信息需求模型的匹配机制,该方法不依赖于具体的领域知识库,大大降低“噪音”影响,并可以适用于多媒体类型文件的过滤和信息服务。 相似文献
8.
文本过滤是指从大量的文本数据流中寻找满足特定用户需求的文本的过程.首先从任务、测试主题、语料库和评测指标等方面介绍了文本检索领域最权威的国际评测会议--文本检索会议(TREC)及其中的文本过滤项目,然后详细地描述了基于向量空间模型的文本过滤系统.该系统由训练和自适应过滤两个阶段组成.在训练阶段,通过特征抽取和伪反馈建立初始的过滤模板,并设置初始阈值;在过滤阶段,则根据用户的反馈信息自适应地调整模板和阈值.该系统参加了2000年举行的第9次文本检索会议的评测,取得了很好的成绩,在来自多个国家的15个系统中名列前茅,其中自适应过滤和批过滤的平均准确率分别为26.5%和31.7%. 相似文献
9.
文本过滤是指从大量的文本中寻找满足用户需求的文本的过程。以互联网上下载的突发事件新闻文本为研究背景,提出了基于新闻标题的文本过滤模型,根据示例文本构建标题过滤模板,采用基于关键字的过滤方法对突发事件新闻文本进行过滤。其特点是实现简单,过滤速度快,有一定的实际作用。 相似文献
10.
针对新浪、腾讯等微博平台出现大量广告的问题,提出一个微博广告过滤模型。通过对数据的预处理,将采集到的微博原始数据转换成干净且计算机易处理的数据。在预处理阶段,根据微博文本的特点,对停用词表进行改进,以提高查准率,然后基于支持向量机构建一个训练分类器对数据进行训练,经过不断的学习和反馈,取得较好的分类效果。实验结果表明,该模型进行广告过滤时准确率超过90%,效果优于基于关键字的方法。 相似文献
11.
中英文双语交叉过滤的逻辑模型 总被引:6,自引:1,他引:6
文章简要地描述了文本过滤的背景,提出了基于潜在语义索引的中英文双语交叉过滤的逻辑模型。其基本思想是改进双语交叉过滤中基于词汇对译的方法,而是利用双语文本中潜在的语义结构,作为用户模板与文本匹配的基础。将出现的双语词汇和文本映射为语义空间的向量,不必翻译对译词,甚至不需要出现相应的对译词,也能匹配成功,极大地改善了交叉过滤的精度,效果良好。 相似文献
12.
基于类别空间模型的文本分类系统的设计与实现 总被引:8,自引:1,他引:8
从理论和应用的角度对文本信息的分类方法进行研究,提出类别空间模型的概念,用于描述词语和类别之间的关系,并实现了基于类别空间模型的文本分类系统。通过实验表明,该系统有效地提高了文本分类的正确率。 相似文献
13.
14.
15.
文本层次分析与文本浏览 总被引:5,自引:2,他引:5
本文简要描述了文本的物理结构和逻辑结构以及相应的向量空间模型。研制了具有导航机制的文本浏览系统。提出了文本结构分析中的层次分析方法,它采用有序划分层次的方法。并在此基础上,给出了文本结构中各单元的标记信息,由此形成了文本的可视化表示。利用文本、层次、段落的超文本连接,根据浏览的需要,逐级展现文本细节,帮助用户有目的、有选择地浏览文本。最后给出评价的结果。 相似文献
16.
基于Web的信息过滤机制 总被引:12,自引:0,他引:12
林鸿飞 《计算机工程与应用》2002,38(2):190-192
信息过滤目的在于依据用户兴趣进行动态信息搜索以满足用户的需求。文章给出了基于Web的信息过滤机制。它根据用户信息需求,建立公共模板,利用搜索引擎获取信息源;然后利用文档与用户模板的匹配机制,将相关文档推送给用户。在文档结构分析和相关反馈的基础上,提出了特征抽取和权重分配算法;将布尔模型和向量空间模型相结合,提出了文档与用户模板匹配算法。 相似文献
17.
18.