首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
通过对不同活化生产环境下活性炭四氯化碳吸附值与碘吸附值对应关系对比分析,得出并验证了蒸汽与空气比例对活化反应的影响。  相似文献   

2.
研究"褐煤干燥-炭化-脱杂-成型-活化"制备高碘吸附值的碳质吸附剂的工艺,得出活化温度、活化时间和水蒸气用量对碳质吸附剂产品产率和碘吸附值的影响规律.通过实验得到最佳工艺条件为:活化温度为700℃,活化时间为4h,水蒸气用量分别控制为1.2kg/(kg料.h),0.9kg/(kg料.h)和0.78kg/(kg料.h)时得到各碘吸附值的碳质吸附剂产品产率分别可达28%(1 048mg/g),31%(800mg/g)和32.5%(700mg/g).经过扫描电子显微镜的观察,碳质吸附剂产品结构更加疏松,微孔有增大的趋势.  相似文献   

3.
低阶煤制备活性焦及其吸附性能研究   总被引:1,自引:0,他引:1  
为解决煤化工废水处理难题,提高活性焦吸附性能,以5种典型低阶煤为原料,通过回转炉炭化和活化工序制备活性焦,研究活化温度、活化蒸气量和活化时间对活性焦吸附性能的影响,分析了不同活性焦对废水的吸附能力。结果表明:以褐煤为原料制备活性焦时,最佳活化温度为800℃,活化时间为3 h,活化蒸气量为1050 g;长焰煤最佳活化温度为850℃,活化时间为4 h,活化蒸气量为1200 g。在最佳条件下,褐煤活性焦的吸附值为36.32 mg/g,比长焰煤活性焦吸附值高10%。5种原煤制备的活性焦的比表面积与吸附值没有明显相关性。活性焦的孔容积越大,吸附值越高,造成不同活性焦吸附值差别的主要孔径为2~5 nm和5~20 nm。  相似文献   

4.
以KOH为活化剂对香蕉叶进行炭化活化,制备了具有高吸附性能的活性炭。探讨了初始质量浓度、时间、吸附剂用量、pH值、温度对吸附率的影响,并比较了未活化炭化的香蕉叶粉末及香蕉叶活性炭的吸附效果。结果表明,在亚甲基蓝溶液的体积为100mL,亚甲基蓝的初始浓度为200 mg·~(L-1),吸附时间为2h,香蕉叶活性炭的用量为0.05g,pH值为6.86,温度25℃的条件下,香蕉叶活性炭对亚甲基蓝的吸附率可达99.22%。通过与未炭化活化的香蕉叶的比较可知,香蕉叶经炭化活化后,对亚甲基蓝的吸附率可提高40.72%。  相似文献   

5.
《应用化工》2022,(10):2107-2110
以大型海藻铜藻为原料,采用H_3PO_4活化法制备活性炭,考察磷酸与藻粉的浸渍比、浸渍时间、活化温度、活化时间对得率、亚甲基蓝吸附值、碘吸附值的影响。H_3PO_4活化法制备活性炭最佳工艺如下:磷酸与藻粉的质量比为5∶1,浸渍时间100 min,活化温度550℃,活化时间75 min。最佳制备条件下制得的活性炭碘吸附值为528. 8 mg/g,亚甲基蓝吸附值为142. 5 mg/g,得率为43. 74%,比表面积为728. 73 m2/g。pH=2条件下,铜藻基活性炭对于Cr(Ⅵ)最大吸附量和吸附率可分别到达31. 5 mg/g和85%。  相似文献   

6.
以晋城无烟煤为原料,与KOH活化剂混合均匀,利用正交实验,通过碘吸附值和亚甲基蓝吸附值对其活化功率、活化时间和碱度等工艺条件进行探讨,采用扫描电镜(SEM)和BET比表面等检测手段,对KOH最佳工艺条件下制备的活性炭进行了表征.实验结果表明:KOH微波活化制备晋城无烟煤基活性炭的最佳工艺条件为活化功率480 W,活化时间7.5min,碱度4∶1,此时制备的活性炭吸附效果最好,其碘吸附值为989.4mg/g,比表面积为1 057.2m2/g,其工艺条件对活性炭吸附的影响递减顺序为:活化功率、活化时间、碱度.  相似文献   

7.
考察了竹活性炭不同碘吸附值及吸附时间对甲醛吸附量的影响。结果表明:随着碘吸附值增加,竹活性炭对甲醛吸附能力也增加,在72 h内碘吸附值最高竹活性炭(744.16mg/g)其甲醛吸附能力为碘吸附值最低竹活性炭(126.83 mg/g) 的2.63倍,通过SPSS软件分析得出,竹活性炭碘吸附值与甲醛吸附成正相关,在72 h内以24 h甲醛吸附量为基准,对每隔24 h甲醛吸附增加值进行比较。结果表明竹活性炭碘吸附值越大,吸附时间越长,竹活性炭对甲醛吸附增加值也越大,且两者之间成正相关。进一步以竹活性炭碘吸附值(X1)和吸附时间(X2)为变量进行回归分析,得出回归方程:Y=66.215lnX1+0.973X2-286.66,相关系数R2为0.948。  相似文献   

8.
污泥炭化制备生物炭是目前较有发展前景的一种污泥资源化利用处理方式。本研究以深圳固戍污水处理厂脱水污泥为实验原料,研究了碳化温度、碳化时间、污泥活化温度、活化剂种类和活化剂硫酸掺杂量对所得污泥基生物炭碘吸附值的影响。综合考虑吸附性能和经济性,得出污泥基生物炭最佳的制备条件为:污泥用体积比为3︰2的1 M H_2SO_4︰5 M ZnCl_2活化剂80℃下水浴加热活化24 h后,在550℃下炭化1h。所得污泥基生物炭的碘吸附值最大,为548.65 mg/g。  相似文献   

9.
以大型海藻铜藻为原料,采用H_3PO_4活化法制备活性炭,考察磷酸与藻粉的浸渍比、浸渍时间、活化温度、活化时间对得率、亚甲基蓝吸附值、碘吸附值的影响。H_3PO_4活化法制备活性炭最佳工艺如下:磷酸与藻粉的质量比为5∶1,浸渍时间100 min,活化温度550℃,活化时间75 min。最佳制备条件下制得的活性炭碘吸附值为528. 8 mg/g,亚甲基蓝吸附值为142. 5 mg/g,得率为43. 74%,比表面积为728. 73 m2/g。pH=2条件下,铜藻基活性炭对于Cr(Ⅵ)最大吸附量和吸附率可分别到达31. 5 mg/g和85%。  相似文献   

10.
废筷子采用磷酸活化法在不同操作条件下制备得到各种活性炭。分别研究了磷酸活化法制备活性炭的主要操作参数,如浸渍比、磷酸浓度、活化温度和活化时间对活性炭收率和活性炭对碘的吸附值的影响。实验结果表明,在最佳工艺条件:磷酸浓度70%,浸渍比2.5:1,活化温度500℃,活化时间60min下,所制得活性炭的碘吸附值为885.23mg/g。另外,实验测定了废筷子采用磷酸活化法制备的活性炭对硫醇的吸附性能。结果发现活性炭的碘吸附值越高对硫醇的吸附效果越好。  相似文献   

11.
《应用化工》2019,(12):2947-2950
以牡丹花茶饮料生产末端茶渣(以下简称"茶渣")作为活性炭制备原料,考察磷酸与茶渣的浸渍比、活化温度、活化时间对活性炭得率、碘吸附值的影响。结果表明,磷酸法制备茶渣活性炭的最佳工艺参数为:浸渍比(磷酸/原料)为1∶2.5,活化温度550℃,活化时间0.5 h。活性炭得率为29.91%,碘吸附值为968.75 mg/g。含水率为4.80%,灰分含量为17.25%。接近于国家一级活性炭对碘吸附值的要求标准1 000 mg/g。100 mL浓度为10 mg/L的苯酚废水,加入0.1 g活性炭,25℃振荡1 h,pH=5时,茶渣活性炭对于苯酚吸附量达到8.67 mg/g,吸附率约为87%。  相似文献   

12.
《应用化工》2022,(12):2947-2950
以牡丹花茶饮料生产末端茶渣(以下简称"茶渣")作为活性炭制备原料,考察磷酸与茶渣的浸渍比、活化温度、活化时间对活性炭得率、碘吸附值的影响。结果表明,磷酸法制备茶渣活性炭的最佳工艺参数为:浸渍比(磷酸/原料)为1∶2.5,活化温度550℃,活化时间0.5 h。活性炭得率为29.91%,碘吸附值为968.75 mg/g。含水率为4.80%,灰分含量为17.25%。接近于国家一级活性炭对碘吸附值的要求标准1 000 mg/g。100 mL浓度为10 mg/L的苯酚废水,加入0.1 g活性炭,25℃振荡1 h,pH=5时,茶渣活性炭对于苯酚吸附量达到8.67 mg/g,吸附率约为87%。  相似文献   

13.
《应用化工》2022,(5):961-965
采用KOH活化改性制备焦粉吸附材料MCP,研究MCP对水中Cd(2+)的吸附效果。结果表明,在KOH溶液浓度14 mol/L(焦粉质量∶KOH溶液体积=1∶4),活化温度850℃,活化时间120 min工艺条件下制得的MCP,亚甲基蓝吸附值达到132.5 mg/g。在30℃、pH值8.0的25 m L含Cd(2+)的吸附效果。结果表明,在KOH溶液浓度14 mol/L(焦粉质量∶KOH溶液体积=1∶4),活化温度850℃,活化时间120 min工艺条件下制得的MCP,亚甲基蓝吸附值达到132.5 mg/g。在30℃、pH值8.0的25 m L含Cd(2+)(浓度为100 mg/L)废水中,投加0.2 g的MCP,处理120 min,Cd(2+)(浓度为100 mg/L)废水中,投加0.2 g的MCP,处理120 min,Cd(2+)去除率达96.91%,吸附量为12.12 mg/g。实验条件下,MCP对Cd(2+)去除率达96.91%,吸附量为12.12 mg/g。实验条件下,MCP对Cd(2+)吸附过程与准一级动力学及准二级动力学模型均有较好吻合,后者拟合度更高;用Langmuir和Freundlich模型处理等温吸附线,前者与实际过程更为接近。  相似文献   

14.
山核桃壳活性炭制备及其吸附苯胺特性   总被引:8,自引:0,他引:8  
采用磷酸法制备山核桃壳活性炭,并以磷酸浓度、活化温度和活化时间为因素,亚甲基蓝脱色力、碘吸附值及得率为指标,进行正交设计优化,从热力学角度研究了山核桃壳活性炭对苯胺的吸附行为. 结果表明,磷酸法制备山核桃壳活性炭的优化工艺条件为:磷酸50%(w),活化温度300℃,活化时间45 min. 在此条件下,活性炭得率为53.21%,碘吸附值为804.36 mg/g,亚甲基蓝脱色力为102 mL/g. 在所研究的条件范围内,活性炭对苯胺的吸附能力随温度升高而增大,酸性条件有利于吸附. 吸附是自发吸热的物理吸附过程,遵循Freundlich吸附等温线.  相似文献   

15.
热解活化法制备高吸附性能椰壳活性炭   总被引:1,自引:1,他引:0  
以椰壳为原料,采用高温直接热解活化法制备高吸附性能活性炭。研究了活化温度、活化时间对活性炭吸附性能的影响。研究结果表明,活化温度为 900 ℃,热解活化时间为 8 h,升温速率为 10 ℃/min,制得碘吸附值为 1 628.54 mg/g,亚甲基蓝吸附值为 375 mg/g 的高吸附性能椰壳活性炭,得率为 9.41 %。氮气吸附实验结果表明,该活性炭比表面积 1 723 m2/g、总孔容积 0.87 cm3/g、微孔容积 0.68 cm3/g、中孔容积0.18 cm3/g、平均孔径 2.03 nm。热解活化制备的椰壳活性炭样品性能优于市售水蒸气法椰壳净水活性炭国家标准。  相似文献   

16.
采用KOH活化改性制备焦粉吸附材料MCP,研究MCP对水中Cd~(2+)的吸附效果。结果表明,在KOH溶液浓度14 mol/L(焦粉质量∶KOH溶液体积=1∶4),活化温度850℃,活化时间120 min工艺条件下制得的MCP,亚甲基蓝吸附值达到132.5 mg/g。在30℃、pH值8.0的25 m L含Cd~(2+)(浓度为100 mg/L)废水中,投加0.2 g的MCP,处理120 min,Cd~(2+)去除率达96.91%,吸附量为12.12 mg/g。实验条件下,MCP对Cd~(2+)吸附过程与准一级动力学及准二级动力学模型均有较好吻合,后者拟合度更高;用Langmuir和Freundlich模型处理等温吸附线,前者与实际过程更为接近。  相似文献   

17.
膨润土的改性及其对染料的吸附性能的试验研究   总被引:2,自引:0,他引:2  
探讨了膨润土的改性机理、改性方法及其改性后对染料的吸附性能。以钙基膨润土为原料,系统地研究了pH值、活化时间及活化温度对膨润土改性的影响。通过对染料进行吸附试验确定出最佳改性条件,再将改性膨润土用于吸附染料实验,判断出pH值、活性白土用量以及吸附时间对染料吸附的影响。  相似文献   

18.
以凹凸棒土为原料,进行酸活化改性。采用正交试验和单因素实验测定了不同的改性活化条件对凹凸棒土脱色率的影响。研究结果表明,酸活化条件对凹凸棒土吸附性能的影响顺序为:酸用量液固比反应温度反应时间。然后以活化凹凸棒土为原料,考察了不同的吸附工艺如吸附温度、吸附时间、凹凸棒土用量等对润滑油碱氮脱除率的影响规律。研究结果表明凹凸棒土用量影响吸附后润滑油的碱氮值的主要因素。  相似文献   

19.
本文通过对ATT土焙烧活化、酸处理活化的研究,得到了活化的最佳温度和最佳酸度值。通过ATT土对石油、植物油脱色吸附的研究,并与一般活性白土作了比较,实验证ATT土的脱色能力比一般活性白土高得多。  相似文献   

20.
活化煤系高岭土吸附城市污水中有机物的研究   总被引:1,自引:0,他引:1  
考察了吸附平衡时间、污水浓度、液固比、反应温度和pH值对碳酸钠活化煤系高岭土吸附城市生活污水中有机物的影响,在此基础上又研究了吸附等温线.结果表明,当吸附平衡时间为2 h,液固比为60 mL/g,pH为6时,活化煤系高岭土对城市生活污水中有机物的吸附率达到最大,且加热不利于吸附反应的进行.碳酸钠活化煤系高岭土对城市生活污水中有机物的吸附行为更符合Langmuir方程,其吸附是以化学吸附为主.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号