首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The infrared chemiluminescence spectra of CO2 formed during steady-state CO+NO reaction over Pd(110) indicated that the temperature of the bending vibrational mode was much higher than that of the antisymmetric one at higher surface temperatures such as 800–850 K. Especially, in the high temperature range, more vibrationally excited CO2 was formed from CO+NO reaction than CO+O2 reaction. On the basis of the result, we propose the model structure of reaction intermediates for CO2 formation in CO+NO reaction, which is different from that in CO+O2 reaction.  相似文献   

2.
We have combined the use of a molecular beam reactor and in situ spectroscopy (XPS) in order to correlate changes in the rate of CO oxidation and the CO–NO reaction with the coverages of the adsorbates and intermediates on the surface. In the reactor, both reactions exhibit an isothermal “light-off” phenomenon in which the rate autocatalytically increases with time. In the case of the CO oxidation reaction this is due to the desorption of CO which releases extra sites for O2 dissociation which, in turn, removes more CO, and hence the acceleration. In effect the reaction can be written as 2COa + O2g + 2S → 2CO2g + 4S, the acceleration coming from the release of extra adsorption sites S, which are involved in the reaction itself. “Fast XPS”, carried out in situ during the course of the reaction, shows domination of the surface by COa below 390 K and domination by Oa above that temperature, with a rapid change in surface coverage over a very narrow temperature window. On high surface area samples this acceleration is further reinforced due to a rapid temperature increase because of the highly exothermic nature of the overall reaction. The situation for the CO–NO reaction is broadly similar, except that the surface is dominated by NO at low temperature, not CO which tends to be displaced from the surface by NO. “Light-off” is dictated by the onset of the dissociation of NOa, which occurs at ~400 K. Once Na and Oa are formed, N2O production is immediate and accelerates due to the creation of vacant sites for both NO and CO adsorption, the latter removing Oa as CO2g. Again, the reaction self-accelerates and there is a rapid change of surface coverage from NOa to Oa at ~450 K. The overall self acceleration is due to the following overall reaction, 2NOa + COg + S → N2Og + CO2g + 3S, again producing more adsorption sites (S) in carrying out the reaction step. The rate is reduced at high temperature due to domination of the surface by Oa and to the reduced coverages of the molecular species.  相似文献   

3.
This paper reports a comparative kinetic investigation of the overall reduction of NO in the presence of CO or H2 over supported Pt-, Rh- and Pd-based catalysts. Different activity sequences have been established for the NO+H2 reaction Pt/Al2O3>Pd/Al2O3>Rh/Al2O3 and for the NO+CO reaction Rh/Al2O3>Pd/Al2O3> Pt/Al2O3. It was found that both reactions differ from the rate determining step usually ascribed to the dissociation of chemisorbed NO molecules. The rate enhancement observed for the NO+H2 reaction has been mainly related to the involvement of a dissociation step of chemisorbed NO molecules assisted by adjacent chemisorbed H atoms. The calculation of the kinetic and thermodynamic constants from steady-state rate measurements and subsequent comparisons show that Pd and Rh are predominantly covered by chemisorbed NO molecules in our operating conditions which could explain either changes in activity or in selectivity with the lack of ammonia formation on Rh/Al2O3 during the NO+H2 reaction. Interestingly, Pd and Rh exhibit similar selectivity behaviour towards the production of nitrous oxide (N2O) irrespective of the nature of the reducing agent (CO or H2). A weak partial pressure dependency of the selectivity is observed which can be related to the predominant formation of N2 via a reaction between chemisorbed NO molecules and N atoms, while over Pt-based catalysts the associative desorption of two adjacent N atoms would occur simultaneously. Such tendencies are still observed under lean conditions in the presence of an excess of oxygen. However, a detrimental effect is observed on the selectivity with an enhancement of the competitive H2+O2 reaction, and on the activity behaviour with a strong oxygen inhibiting effect on the rate of NO conversion, particularly on Rh.  相似文献   

4.
The CO + NO reaction is one of the profoundly important reactions that take place on Pd-based industrial three-way catalysts (TWC). In this review, we discuss results from polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and conventional IRAS experiments on CO adsorption, NO adsorption and the CO + NO reaction on a Pd(111) model catalyst surface within a wide range of pressures (10?6–450 Torr) and temperatures (80–650 K). It will be shown that these studies allow for a detailed understanding of the adsorption behavior of these species as well as the nature of the products that are formed during their reaction under realistic catalytic conditions. CO adsorption experiments on Pd(111) at elevated pressures reveal that CO overlayers exhibit similar adsorption structures as found for ultrahigh vacuum (UHV) conditions. On the other hand, in the case of the CO + NO reaction on Pd(111), the pressure dependent formation of isocyanate containing species' was observed. The importance of this observation and its effects on the improvement of the catalytic NO x abatement is discussed. The kinetics of the CO + NO reaction on Pd(111) were also investigated and the factors affecting its selectivity are addressed.  相似文献   

5.
The NO reduction by ethanol was studied on palladium catalyst supported on sulphated zirconia. Temperature programmed desorption of NO and ethanol (TPD) and temperature programmed surface reaction (TPSR) analyses as well as catalytic tests in reducing and oxidizing conditions (O2 presence), besides diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) showed the formation of intermediate species during the reaction, such as ethoxy species that reacted forming ethylene. Besides dehydrogenate formed adsorbed acetate species, which than decompose and/or react with hydroxyls of the support. The sulphated zirconia support increased the acid sites with the formation of strong Brönsted sites, favoring the formation of ethoxy species. Acetate species also react with NO adsorbed on Pd forming N2, N2O, CO and CO2. The excess of O2 favored ethanol oxidation to CO2, consequently less ethanol was available to react with NO x .  相似文献   

6.
A model Pd/Fe2O3 catalyst prepared by the vacuum technique has been studied in the carbon monoxide oxidation in the temperature range of 300–550 K at reagent pressures P(CO)=16 Torr, P(O2)= 4 Torr. It has been shown that the activity of the fresh catalysts is determined by palladium. According to the XPS data, the reduction with carbon monoxide results in the formation of Fe2+ (formally Fe3O4) and appearance of the catalytic activity in this reaction at low temperatures (350 K). High low-temperature activity of the catalyst is supposed to be connected with the reaction between oxygen adsorbed on the reduced sites of the support (Fe2+) and CO adsorbed on palladium (COads) at the metal–oxide interface.  相似文献   

7.
The infrared chemiluminescence technique has been applied to the catalytic oxidation of CO on a Pt(110)(1×2) surface. The vibrational and the rotational states of CO2 formed on the reconstructed Pt(110)(1×2) surface are more excited than those on the terrace Pt(111) surface. The vibrational state of the product CO2 strongly depends on the CO coverage: the vibrational temperature (TV) of the product CO2 becomes higher, as the coverage of CO increases. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We have studied the NO-CO-O2 reaction over a Rh(111) catalyst by monitoring the reaction products (CO2, N2O, and N2) and the infrared (IR) intensity of surface CO and NO at various partial pressures of NO, CO and O2, and sample temperatures. The selectivity for N2O formation, apparent activation energy for product formation, and NO consumption rate during NO-CO-O2 are identical to those measured during the NO-CO reaction. The IR measurements show that during NO-CO-O2 the same two adsorbed species, NO at 1640 cm-1 and linear CO at ~2040 cm-1, are present in the same surface concentrations as during NO-CO. For this reason the NO-CO-O2 kinetics are dominated by the NO-CO kinetics, the NO consumption is rate limited by dissociation of adsorbed NO, and the N2O selectivity is dominated by surface NO coverage. In contrast, O2 consumption is adsorption rate limited with the NO-CO adsorption-desorption equilibrium controlling the vacant sites required to dissociatively adsorb O2. These kinetic and IR data of the CO-NO-O2 reaction and our interpretation of them agree with previous studies over supported Rh catalysts and thus confirm the previously proposed explanation. From RAIRS and kinetic data we estimate the rate constant for the CO+O→CO2 elementary step. The pre-exponential factor for this rate is 2×1010 s-1, a factor of 50 smaller than previous estimates. This rate constant is important to the NO-CO-O2 kinetics because it affects O coverage, which, under certain conditions, inhibits NO consumption. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The effect of the support nature on the performance of Pd catalysts during partial oxidation of ethanol was studied. H2, CO2 and acetaldehyde formation was favored on Pd/CeO2, whereas CO production was facilitated over Pd/Y2O3 catalyst. According to the reaction mechanism, determined by DRIFTS analyses, some reaction pathways are favored depending on the support nature, which can explain the differences observed on products distribution. On Pd/Y2O3 catalyst, the production of acetate species was promoted, which explain the higher CO formation, since acetate species can be decomposed to CH4 and CO at high temperatures. On Pd/CeO2 catalyst, the acetaldehyde preferentially desorbs and/or decomposes to H2, CH4 and CO. The CO formed is further oxidized to CO2, which seems to be promoted on Pd/CeO2 catalyst.  相似文献   

10.
M. Meng  P. Lin  Y. Fu 《Catalysis Letters》1997,48(3-4):213-222
A series of Co-Pt(Pd, Rh)/γ- Al2O3 catalysts were prepared by successive wetness impregnation. The catalytic activities for CO oxidation, NO decomposition and NO selective catalytic reduction (SCR) by C2H4 over the samples calcined at 500°C and reduced at 450°C were determined. The activities of the samples calcined at 750°C and reduced at 450°C for NO selective catalytic reduction (SCR) by C2H4 were also determined. All the samples were characterized by XRD, XPS, XANES, EXAFS, TPR, TPO and TPD techniques. The results of activity measurements show that the presence of noble metals greatly enhances the activity of Co/γ-Al2O3 for CO or C2H4 oxidation. For NO decomposition, the H2-reduced Co-Pt(Pd, Rh)/γ- Al2O3 catalysts exhibit very high activities during the initial period of catalytic reaction, but with the increase of reaction time, the activities decrease obviously because of the oxidation of surface cobalt phase. For NO selective reduction by C2H4, the reduced samples are oxidized more quickly by the excess oxygen in reaction gas. The oxidized samples possess very low activities for NO selective reduction. The results of XRD, XPS and EXAFS indicate that all the cobalt in Co-Pt(Pd, Rh)/γ-Al2O3 has been reduced to zero valence during reduction by H2 at 450°C, but in Co/γ-Al2O3 only a part of the cobalt has been reduced to zero valence, the rest exists as CoAl2O4-like spinel which is difficult to reduce. For the samples calcined at 750°C, the cobalt exists as CoAl2O4 which cannot be reduced by H2 at 450°C and possesses better activities for NO selective reduction. The results of XANES spectra show that the cobalt in Co/γ- Al2O3 has lower coordination symmetry than that in Co-Pt(Pd, Rh)/γ-Al2O3. This difference mainly results from the distorting tetrahedrally- coordinated Co2+ ions which have lower coordination symmetry than Co0 in the catalysts. The coordination number for the Co-Co shell from EXAFS has shown that the cobalt phase is highly dispersed on Co-Pt(Pd, Rh)/γ- Al2O3 catalysts. The TPR results indicate that the addition of noble metals to Co/γ- Al2O3 makes the TPR peaks shift to lower temperatures, which implies the spillover of hydrogen species from noble metals to cobalt oxides. The oxygen spillover from noble metals to cobalt is also inferred from the shift of TPO peaks to lower temperatures and the increased amount of desorbed oxygen from TPD. For CO oxidation, the Co0 is the main active phase. For NO decomposition and selective reduction, Co0 is also catalytically active, but it can be oxidized into Co3O4 by oxygen at high reaction temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
CO oxidation at low temperature over Pd/CeO2–TiO2 catalyst was carried out in the feed containing different contents of water vapor (H2O). A positive effect of H2O was observed on the catalytic performance of Pd/CeO2–TiO2 in CO oxidation at low temperature. The extent of this effect depends on the content of H2O in the feed; with a H2O content being 2.5 vol%, the catalyst Pd/CeO2–TiO2 exhibits the highest stability (longest life time for CO oxidation at 80 °C). The results of in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed reaction (TPReaction) reaction illustrated that H2O in the feed supplies sufficient OH groups in the presence of O2, which can react with adsorbed CO on Pd species to produce CO2. Moreover, H2O may also enhance the adsorption of CO and suppress the formation of some carbonate species.  相似文献   

12.
We have investigated the structure and composition of the model catalyst system Pd/MgO(0 0 1) during oxidation, CO reduction and CO oxidation at near atmospheric pressures by a combination of in situ X-ray diffraction and ex situ transmission electron microscopy and spectroscopy techniques. From the in situ X-ray experiments, we find: (a) the Pd nanoparticles with 9 nm in diameter transform into epitaxial PdO above 10−1 mbar O2 pressure at 570 K, (b) the oxidation process can be reverted by CO exposure, recovering Pd nanoparticles in their initial orientation, and (c) during CO oxidation in a mixture of 50 mbar O2 and 50 mbar CO a new phase is evolving with lattice constant close to the MgO substrate value, which we assign to expanded Pd nanoparticles forming upon carbon incorporation. Ex situ transmission electron microscopy and different spectroscopy techniques uncover the CO2 induced growth of a disordered overlayer containing C, Mg and O, which forms during CO oxidation and leads to an overgrowth of Pd nanoparticles thereby deactivating the catalyst.  相似文献   

13.
Field electron microscopy (FEM), high-resolution electron energy loss spectroscopy (HREELS), molecular beams (MB) and temperature-programmed reaction (TPR) have been applied to the study of the kinetics of CO oxidation at low temperature, and to determine the roles of subsurface atomic oxygen (Osub) and surface reconstruction in self-oscillatory phenomena, on Pd(111), Pd(110) and Pt(100) single crystals and on Pd and Pt tip surfaces. It was found that high local concentrations of adsorbed CO during the transition from a Pt(100)-hex reconstructed surface to the unreconstructed 1×1 phase apparently prevents oxygen atoms from occupying hollow sites on the surface, and leads to the appearance of a weakly bound active adsorbed atomic oxygen (Oads) state in an on-top or bridge position. It was also inferred that subsurface oxygen Osub on the Pd(110) surface may play an important role in the formation of new active sites for the weakly bound Oads atoms. Experiments with 18O isotope labeling clearly show that the weakly bound atomic oxygen is the active form of oxygen that reacts with CO to form CO2 at T 140–160 K. Sharp tips of Pd and Pt, several hundreds angstroms in diameter, were used to perform in situ investigations of dynamic surface processes. The principal conclusion from those studies was that non–linear reaction kinetics is not restricted to macroscopic planes since: (i) planes as small as 200 Å in diameter show the same non-linear kinetics as larger flat surfaces; (ii) regular waves appear under conditions leading to reaction rate oscillations; (iii) the propagation of reaction–diffusion waves involves the participation of different crystal nanoplanes via an effective coupling between adjacent planes.  相似文献   

14.
The effect of adding 330–4930 ppm hydrogen to a reaction mixture of NO and CO (2000 ppm each) over platinum and rhodium catalysts has been investigated at temperatures around 200–250°C. Hydrogen causes large increases in the conversion of NO and, surprisingly, also of CO. Oxygen atoms from the additional NO converted are eventually combined with CO to give CO2 rather than react with hydrogen to form water. This reaction is described by CO + NO +3/2H2 CO2 + NH3 and accounts for 50–100% of the CO2 formed with Pt/Al2O3 and 20–50% with Rh/Al2O3. With the latter catalyst a substantial amount of NO converted produces nitrous oxide. Comparison with a known study of unsupported noble metals suggests that isocyanic acid (HNCO) might be an important intermediate in a reaction system with NO, CO and H2 present.  相似文献   

15.
《Journal of Catalysis》2006,237(1):111-117
Synthesis of acetic acid from methane catalyzed by Pd2+ cations dissolved in sulfuric acid was investigated to determine the effects of reaction conditions and the mechanism. Acetic acid yield was found to be a strong function of CH4 and O2 partial pressures. High O2/CH4 ratio and high total pressure delivered the highest yield of acetic acid (14.2 turnovers of Pd2+) and the highest retention of Pd2+ in solution (96%). Byproducts were sulfur containing compounds (most notably methyl bisulfate) and COx, but the acetic acid selectivity was maximized (82%) by lowering the reaction temperature. Methane is activated by Pd(OSO3H)2, forming (CH3)Pd(OSO3H). CO, generated from the oxidation of methyl bisulfate, inserts into the CH3Pd bond creating a (CH3CO)Pd(OSO3H) species. Reaction of this complex with H2SO4 produces acetic acid. Pd2+ is reduced to Pd0 during the oxidation of methyl bisulfate or CO, and Pd0 is reoxidized to Pd2+ by H2SO4 and O2.  相似文献   

16.
The mechanism of the CO + NO reaction catalyzed by Pt/SBA-15 was studied via independent investigations of CO oxidation and NO disproportionation. Below 400 °C, both CO + O2 and CO + NO reactions approach 100 % conversion, while the catalyst shows negligible activity for NO disproportionation. These results suggest that CO oxidation by atomic oxygen arising from NO dissociation is not a major route for CO2 formation in the CO + NO reaction. In situ IR spectra reveal the formation of isocyanates (NCO) adsorbed on silica. Their surface concentration changes with the extent of the CO + NO reaction. A mechanism is proposed in which isocyanates are reaction intermediates.  相似文献   

17.
The interaction of CO, C2H4, O2, and NO reaction gas compounds over the metallic Pd/Al2O3 and Pd/OSC/Al2O3 monoliths was investigated in order to understand the behaviour of OSC material in the oxidation and reduction reactions. FT-IR gas analyser was used for the analysis of the product gas composition. Several activity experiments carried out with dissimilar feedstreams have revealed that the Ce x Zr1–x O2 mixed oxide is an oxygen storage compound, which promotes CO and C2H4 oxidation as well as NO reduction in particular at low temperatures.  相似文献   

18.
Pd/HZSM-5 catalysts prepared by ion-exchange method using Pd(NH3) 4 2+ were calcined and reduced at different temperatures to provide different metal dispersions. The effect of Pd dispersion on CO adsorption characteristics and acidity were observed through FT-IR study. Methanol and dimethyl ether were the main products in CO hydrogénation over Pd/HZSM-5 catalyst with small Pd particles on which CO was weakly adsorbed, while the selectivity to methane increased with metal sizes.  相似文献   

19.
A kinetic mathematical model has been applied to investigate for the first time the effects of Pd particle size on the rates of oxygen back-spillover and CO oxidation during Oxygen Storage Capacity (OSC) measurements under dynamic conditions over Pd/CeO2 catalysts in the 500–700 °C range. The dependence of the intrinsic rate constant k1 of the CO oxidation reaction on PdO, and that of k 2 app of the oxygen back-spillover from ceria to Pd/PdO on the palladium particle size was estimated by performing curve-fitting of the experimental CO and CO2 pulse transient responses obtained. Activation energies of 8.0, 9.5 and 21.1 kJ/mol were calculated for the Eley–Rideal step of CO oxidation for the 1.3, 1.8 and 16.4 nm Pd particles, respectively, supported on CeO2. The transient rates of CO oxidation and oxygen back-spillover were found to decrease with increasing Pd particle size.  相似文献   

20.
The decomposition of formic acid on Zn/Pd(111) was studied using Temperature Programmed Desorption and High Resolution Electron Energy Loss Spectroscopy. On Pd(111), HCOOH decomposes via both dehydration and dehydrogenation pathways to produce CO, CO2, H2 and H2O. Small amounts of Zn (<0.1 mL) incorporated the Pd(111) surface were found to increase the stability of formate species and alter their decomposition selectivity to favor dehydrogenation, resulting in an increase in CO2 production. This difference in reactivity appears to be caused by relatively long range electronic interactions between surface Pd and Zn atoms and may be important in Pd/ZnO methanol steam reforming catalysts which exhibit high selectivities to CO2 and H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号