首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper models hot compression testing using a dilatometer in loading mode.These small-scale tests provide a high throughput at low cost,but are susceptible to inhomogeneity due to friction and temper-ature gradients.A novel method is presented for correcting the true stress-strain constitutive response over the full range of temperatures,strain-rates and strain.The nominal response from the tests is used to predict the offset in the stress-strain curves due to inhomogeneity,and this stress offset Δσ is applied piecewise to the data,correcting the constitutive response in one iteration.A key new feature is the smoothing and fitting of the flow stress data as a function of temperature and strain-rate,at multiple discrete strains.The corrected model then provides quantitative prediction of the spatial and tempo-ral variation in strain-rate and strain throughout the sample,needed to correlate the local deformation conditions with the microstructure and texture evolution.The study uses a detailed series of 144 hot compression tests of a Zr-Nb alloy.While this is an important wrought nuclear alloy in its own right,it also serves here as a test case for modelling the dilatometer for hot testing of high temperature alloys,particularly those with dual α-β phase microstructures(such as titanium alloys).  相似文献   

2.
This study aims at investigating the fracture behaviour of double torsion specimens using the finite element method. Typical double torsion tests encompass a series of constant-thickness specimens to evaluate the material plane strain fracture toughness. In contrast, the concept of using a novel variable thickness stepped specimen aims at deducing the fracture toughness using a single specimen. In this work, the feasibility of this approach is examined and the effect of the number of steps and fracture thickness in a specimen upon the resulting conditional stress intensity factor is evaluated. The finite element models employed experimentally determined values of the fracture load to evaluate the conditional stress intensity factor of the specimen. Finite element predictions were compared with earlier experimental results using both cast aluminium silicon alloy and gray cast iron specimens and good matching was observed between experimental results and numerical predictions.  相似文献   

3.
Thermal stability of a nanostructured aluminium alloy   总被引:1,自引:0,他引:1  
The microstructural changes taking place in a hydrostatically extrusion-processed nanostructured aluminium alloy during annealing were evaluated quantitatively, by measuring the size and shape of the grains. It was found that the grain size is stable up to an annealing temperature of 300 °C. Within this temperature range, the microstructural evolution proceeds through the annihilation of dislocations in the interior of the grains. At higher annealing temperatures, the recovered grains begin to grow and the microstructure becomes more homogeneous in terms of the grain size. The possibilities of an improvement of alloy thermal stability are discussed.  相似文献   

4.
The small-satellite thermal subsystem main function is to control temperature ranges on equipments, and payload for the orbit specified. Structure subsystem has to ensure the satellite structure integrity. Structure integrity should meet two constraints; first constraint is accepted fatigue damage due to cyclic temperature, and second one is tolerable mounting accuracy at payload and Attitude Determination and Control Subsystem (ADCS) equipments’ seats. First, thermal analysis is executed by applying finite-difference method (IDEAS) and temperature profile for satellite components case is evaluated. Then, thermal fatigue analysis is performed applying finite-element analysis (ANSYS) to calculate the resultant damage due to on-orbit cyclic stresses, and structure deformations at the payload and ADCS equipments seats.  相似文献   

5.
用ABAQUS有限元软件建立了热障涂层模型,计算得出,在热载荷作用下,界面形貌对热障涂层材料残余应力分布影响很大,σ22主要集中在热生长氧化层和过渡层波峰处,随着热生长氧化层变厚、波长变小、振幅变大,σ22变大,且最大值产生在热生长氧化层/过渡层界面的波峰处.  相似文献   

6.
A test equipment was designed to study thermal shock and thermal fatigue of ceramic materials subjected to fast heating (ascending). The equipment was designed to generate thermal stress in a test specimen by heating one surface of it by an oxy-hydrogen flame while cooling the opposite surface. The sample cracked when thermal stress exceeded its mechanical strength. The in situ crack formation was detected by an acoustic emission system coupled to the set up. The hot zone temperature was measured by an infra red pyrometer. The equipment was also designed to run thermal fatigue test cycles in automatic mode between two selected temperatures. The temperature and thermal stress distribution in the test specimen were modelled using finite element software. The effect of temperature distribution of the top and bottom surfaces on thermal stresses was studied. It was observed that the thermal stress is very sensitive to the temperature distribution on the top surface and maximum near the periphery of the top surface. This was in agreement with the experimental results in which the cracks were originated from the periphery of top surface. It was also observed that the failure temperature was higher for thicker samples.  相似文献   

7.
Recently pure omega plus bcc Zr was fabricated for the first time through the simultaneous application of compression and shear to pure alpha Zr by high pressure torsion. This phase was found to be stable under ambient conditions after processing. Here the thermal stability of the pure bcc Zr thus fabricated is analyzed using differential scanning calorimetry (DSC), in-situ X-ray diffraction at high temperature and transmission electron microscopy (TEM). Our results show that the temperature of the reverse transformation of the bcc phase is close to that of the omega phase. The presence of a mixed structure formed by alternating nanolaminates of the omega and the bcc phases might play a key role in the retention of these two phases at ambient pressure and temperature.  相似文献   

8.
Prediction of oxidation-assisted crack growth has been carried out for a nickel-based superalloy at elevated temperature based on finite element analyses of oxygen diffusion, coupled with viscoplastic deformation, near a fatigue crack tip. The material constitutive behaviour, implemented in the finite element code ABAQUS via a user-defined material subroutine (UMAT), was described by a unified viscoplastic model with non-linear kinematic and isotropic hardening rules. Diffusion of oxygen was assumed to be controlled by two parameters, the oxygen diffusivity and deformation-assisted oxygen mobility. Low frequencies and superimposed hold periods at peak loads significantly enhanced oxygen concentration near the crack tip. Evaluations of near-tip deformation and oxygen concentration were performed, which led to the construction of a failure envelop for crack growth based on the consideration of both oxygen concentration and accumulated inelastic strain near the crack tip. The failure envelop was then utilised to predict crack growth rates in a compact tension (CT) specimen under fatigue-oxidation conditions for selected loading ranges, frequencies and dwell periods. The predictions from the fatigue-oxidation failure envelop compared well with the experimental results for triangular and dwell loading waveforms, with marked improvements achieved over those predicted from the viscoplastic model alone. The fatigue-oxidation predictions also agree well with the experimental results for slow-fast loading waveforms, but not for fast-slow waveforms where the effect of oxidation is much reduced.  相似文献   

9.
Inappropriate design of the test specimen in hot torsion testing may lead to a high accumulation of heat in the central region of the specimen gauge length and as a result flow localization may occur. To avoid this, knowledge of the variation of temperature rise due to plastic deformation over the specimen gauge length for different specimen geometries is necessary. It is also necessary to estimate the distribution of temperature rise in the event that heat generation is inevitable so that the constitutive equations used are modified accordingly. This paper is devoted to these points.  相似文献   

10.
The paper presents an investigation of the damping of PVC foams under flexural vibrations of clamped-free beams. The PVC foams are constrained by two aluminium beams and different densities of the PVC foams are studied. An experimental investigation is implemented using an impulse technique. The natural frequencies and the damping of the beams are modelled by using a finite element analysis based on the sandwich theory. Next, the numerical and experimental results are used to derive the shear modulus and the damping of PVC foams as functions of the frequency. Finally, the experimental investigation and the developed modelling show how the damping of aluminium–foam beams must be corrected to estimate the damping of PVC foams.  相似文献   

11.
The effect of strain reversal on hardening due to high pressure torsion (HPT) was investigated using commercially pure aluminium. Hardening is lower for cyclic HPT (c-HPT) as compared to monotonic HPT (m-HPT). When using a cycle consisting of a rotation of 90° per half cycle, there is only a small increase in hardness if the total amount of turns is increased from 1 to 16. Single reversal HPT (sr-HPT) processing involves torsion in one direction followed by a (smaller) torsion in the opposite direction. It is shown that a small reversal of 0.25 turn (90°) reduces hardness drastically, and that decrease is most marked for the centre region. These behaviours and other effects are interpreted in terms of the average density of geometrically necessary dislocations (GNDs) and statistically stored dislocations (SSDs). A model is presented that describes the experimental results well. A key element of the model is the assumption that at the very high strains developed in severe plastic deformation processes such as HPT, the dislocation density reaches a saturation value. The model indicates that the strength/hardness is predominantly due to GNDs and SSDs.  相似文献   

12.
The thermal conductivity of a collection of magnesium integral foams has been measured by using the Transient Plane Source (TPS) method. The results have shown a power-trend dependency with bulk density as the existing models predict. Additionally, micro-computed tomography (μCT) studies have been carried out on selected samples whose thermal conductivity values slightly deviate from the fitted curve to inspect the density distribution. Differences have been explained in terms of the local average density obtained by μCT in the volume covered by the heat flux. These results have revealed the high accuracy of the TPS method when it is combined with micro-tomographic techniques.  相似文献   

13.
Redistribution of elements may take place in alloys during severe plastic deformation, which significantly alters the mechanical properties of the alloys. Therefore, comprehensive knowledge about deformationinduced redistribution of elements has to be established. In the present paper, the distribution of Mg in an Al-Mg alloy processed by high pressure torsion was examined using atom probe tomography(APT).With crystallographic information extracted by APT data analysis, this research reveals that the movement of dislocations plays an important role in the formation of Mg-depletion zones in the deformed microstructure.  相似文献   

14.
The thermal conductivity of wood-derived graphite and graphite/copper composites was studied both experimentally and using finite element analysis. The unique, naturally-derived, anisotropic porosity inherent to wood-derived carbon makes standard porosity-based approximations for thermal conductivity poor estimators. For this reason, a finite element technique which uses sample microstructure as model input was utilized to determine the conductivity of the carbon phase independent of porosity. Similar modeling techniques were also applied to carbon/copper composite microstructures and predicted conductivities compared well to those determined via experiment.  相似文献   

15.
A new composite processing technology characterized by hot-dip Zn–Al alloy process was developed to achieve a sound metallurgical bonding between Al–7 wt% Si alloy (or pure Al) castings and low-carbon steel inserts, and the variations of microstructure and property of the bonding zone were investigated under high-pressure torsion (HPT). During hot-dipping in a Zn–2.2 wt% Al alloy bath, a thick Al5Fe2Znx phase layer was formed on the steel surface and retarded the formation of Fe–Zn compound layers, resulting in the formation of a dispersed Al3FeZnx phase in zinc coating. During the composite casting process, complex interface reactions were observed for the Al–Fe–Si–Zn (or Al–Fe–Zn) phases formation in the interfacial bonding zone of Al–Si alloy (or Al)/galvanized steel reaction couple. In addition, the results show that the HPT process generates a number of cracks in the Al–Fe phase layers (consisting of Al5Fe2 and Al3Fe phases) of the Al/aluminized steel interface. Unexpectedly, the Al/galvanized steel interface zone shows a good plastic property. Beside the Al/galvanized steel interface zone, the microhardnesses of both the interface zone and substrates increased after the HPT process.  相似文献   

16.
In this paper, an axisymmetric indentation model is set up to calculate the effects of the roughness of the thermally grown oxide (TGO) layer, which was modeled as a sinusoidal wave, on the indentation response of the thermal barrier coatings. It is found that the amplitude, wavelength, and thickness of the thermally grown oxide layer have obvious influences on the indentation response, while the effect of the indenter position can be neglected. In the top coating layer, residual stress mainly occurs below the indenter and around the nearest two peaks of the thermally grown oxide layer to the indenter. Only when the indentation depth is less than 10% of the thickness of the top coating layer, the influence of TGO roughness on the force versus displacement curves of the indentation can be ignored. Correlating this work with the experimental data from indentation test may lead to improved characterization of the mechanical properties of TBC systems.  相似文献   

17.
Macroporous ß-type Ti–40Nb compacts with particularly low stiffness suitable for biomedical applications were successfully processed by a space-holder sintering method with a total porosity range of 50–60%. The microstructure of these samples as well as their phase composition and their mechanical properties were carefully analyzed. The samples comprise macropores with 100–300 μm size formed by NaCl space-holder particles and micropores of 1–3 μm size within the sintered Ti–Nb alloy. The correlation between the mesoscopic Young’s modulus and the microporosity of the alloy was analyzed by combining compression tests, microcomputer tomography (μCT), and finite element analysis (FE). The derived relationship permits to predict the macroscopic Young’s modulus of macroporous compacts for a known morphology of the macroporosity.  相似文献   

18.
Thermal fatigue analysis based on 2D finite difference and 3D finite element methods is carried out to study the performance of solar panel structure during micro-satellite life time. Solar panel primary structure consists of honeycomb structure and composite laminates. The 2D finite difference (I-DEAS) model yields predictions of the temperature profile during one orbit. Then, 3D finite element analysis (ANSYS) is applied to predict thermal fatigue damage of solar panel structure. Meshing the whole structure with 2D multi-layer shell elements with sandwich option is not efficient, as it misses thermal response of the honeycomb structure. So we applied a mixed approach between 3D solid and 2D shell elements to model the solar panel structure without the sandwich option.  相似文献   

19.
Finite element modeling was used to examine the flow processes in high-pressure torsion (HPT) when using quasi-constrained conditions where disks are contained within depressions on the inner surfaces of the upper and lower anvils. Separate simulations were performed using applied pressures from 0.5 to 2.0 GPa, rotations up to 1.5 turns and friction coefficients from 0 to 1.0 outside of the depressions. The simulations demonstrate the distribution of effective strain within the depressions is comparable to the prediction by ideal torsion, and the applied pressure and the friction coefficient outside the depressions play only a minor role in the distribution of effective strain. The mean stresses during processing vary linearly with the distance from the center of the disk such that there are higher compressive stresses in the disk centers and lower stresses at the edges. The torque required for rotation of the anvil is strongly dependent upon the friction coefficient between the sample and the anvil outside the depressions.  相似文献   

20.
Torsion tests were conducted on unidirectional carbon/epoxy laminated plates. Preliminary finite element analyses showed that the specimen geometry selected avoided pronounced geometric non-linearity and ensured that a significant volume of material would be under a high fraction of the maximum shear stress. Furthermore, the clear prevalence of in-plane shear stresses allowed the development of a simplified data analysis model. Calculated shear-stress strain curves were consistent with the results of tensile tests on angle-ply coupons, despite lower failure stresses that may have been caused by surface defects or by spurious transverse tensile stresses. Nevertheless, the unidirectional plate torsion test is worthy of further research, given the structural relevance of torsional loads and the problems of in-plane shear tests methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号