首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma glucose was studied during the initiation of total parenteral nutrition (TPN) and the discontinuation of TPN without a tapering schedule. Blood was sampled every 5 minutes for 2 hours after the start of TPN and 1 week later as TPN was discontinued. A total of 14 initiations and 14 discontinuations were studied in 18 patients. Severity of illness in patients ranged from stable condition postoperatively to multiple-system failure; six patients had diabetes mellitus. The TPN solution was a 3:1 admixture that provided a caloric intake equal to 1.2 times the resting energy expenditure, with 40% fat and 60% carbohydrate calories. An average of 1963 kcal was provided per day (340 g of glucose, 79 g of fat). During the initiation phase, the mean increase in plasma glucose was 60 mg/dL. The increase for diabetic patients was 79 +/- 14 mg/dL compared with 52 +/- 23 mg/dL for the nondiabetics. During the discontinuation phase, the mean plasma glucose decreased 40 +/- 20 mg/dL; two patients with high concentrations of regular insulin (50 and 100 units) showed an increase in plasma glucose when the TPN was stopped. Plasma glucose returned to the preinfusion baseline after discontinuation. During both initiation and discontinuation, plasma glucose showed little change after the first 60 minutes. No clinical symptoms of hypoglycemia were observed. In conclusion, TPN as a 3:1 admixture can be safely started as full nutrition support and stopped abruptly without a tapering schedule. Plasma glucose response is rapid, predictable, and mostly complete within 60 minutes.  相似文献   

2.
To determine organ damage due to hypoglycemia, we studied the effects of insulin dose and hypoglycemia duration on serum enzyme activity in rabbits. Thirty rabbits were randomly divided into five groups according to hypoglycemia duration and insulin dose: A2, hypoglycemia for 30 minutes with 2 U/kg insulin; A10, hypoglycemia for 30 minutes with 10 U/kg insulin; B2, hypoglycemia for 60 minutes with 2 U/kg insulin; B10, hypoglycemia for 60 minutes with 10 U/kg insulin; and C, no hypoglycemia with 10 U/kg insulin and 50% glucose. Insulin-induced hypoglycemia was reversed by intravenous injection of glucose. Alterations in serum enzyme activity and creatine kinase (CK) isoenzyme distribution were determined before and after insulin injection. Serum CK activity increased significantly in all hypoglycemic groups compared with preinjection values, and tended to remain high for 24 hours in both groups A10 and B10. Serum activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) increased only in group B10. In addition, the level of band 4 of serum CK isoenzymes, which exists predominantly in skeletal muscle and myocardium, increased significantly in group B10. These results suggest that the increase in both serum enzyme and CK band 4 isoenzyme activities during hypoglycemia is primarily due to damage in muscle rather than liver, and that the hypoglycemia duration and insulin dosage may influence the extent of organ damage.  相似文献   

3.
We evaluated the effect of physiologic hyperinsulinemia (plasma insulin 329 +/- 62 vs 687 +/- 62 pmol/L) on counterregulatory hormone responses in 8 IDDM subjects studied during a 2-hour hypoglycemic clamp study with an equivalent degree of hypoglycemia (plasma glucose 3.1 +/- 0.1 and 3.0 +/- 0.1 mmol/L, respectively). Plasma epinephrine levels were increased by 71% during the last 60 minutes of hypoglycemia in the high insulin study (840 +/- 180 vs 1440 +/- 310 pmol/L, respectively p = 0.006). In addition, plasma cortisol and norepinephrine were also increased in the high insulin study (by 19% and 24% respectively, p < 0.01, for both). Plasma growth hormone and glucagon concentrations were not altered by high dose insulin infusion. In spite of increased epinephrine secretion, the glucose infusion rate required to maintain glucose was 2-fold greater in the high insulin study, and there was greater suppression of lipolysis in that group. We conclude that hyperinsulinemia may enhance counterregulatory hormone secretion in IDDM.  相似文献   

4.
Blood glucose and serum potassium (K+) concentrations were measured before, during, and 60 minutes after operation in two groups of 10 patients during nitrous oxide/halothane/d-tubocurarine anesthesia for major orthopedic surgery. In the control group, arterial blood pressure was maintained within normal range, while in the study group trimethaphan camsylate was administered as an intravenous infusion (average, 218 mg.) to maintain a systolic blood pressure of 60 to 65 torr. In the normotensive group, blood glucose rose significantly during operation and early postoperatively and serum K+ was essentially unchanged. In the hypotensive group, trimethaphan caused a striking modification of surgically induced hyperglycemia, together with a small significant decrease in serum K+ intraoperatively. The observed increase in blood glucose is part of the autonomic response to surgical stress. Hormonal factors (growth hormone, cortisol and glucagon) may conceivably be involved. The decrease in serum K+ is probably caused by decreased hepatic glycogenolysis and attenuation of the suppressive effect of catecholamines on insulin release, both effects being secondary to the ganglionic blocking property of trimethaphan. These results indicate that trimethaphan, in contrast to other ganglionic blocking drugs, does not cause hypoglycemia and suggest that serum K+ concentration should be monitored whenever these drugs are used.  相似文献   

5.
OBJECTIVE: People with type 1 diabetes frequently develop a blunted counterregulatory hormone response to hypoglycemia coupled with a decreased hepatic response to glucagon, and consequently, they have an increased risk of severe hypoglycemia. We have evaluated the effect of insulin lispro (Humalog) versus regular human insulin (Humulin R) on the hepatic glucose production (HGP) response to glucagon in type 1 diabetic patients on intensive insulin therapy with continuous subcutaneous insulin infusion (CSII). RESEARCH DESIGN AND METHODS: Ten subjects on CSII were treated for 3 months with lispro and 3 months with regular insulin in a double-blind randomized crossover study After 3 months of treatment with each insulin, hepatic sensitivity to glucagon was measured in each subject. The test consisted of a 4-h simultaneous infusion of somatostatin (450 microg/h) to suppress endogenous glucagon, regular insulin (0.15 mU x kg(-1) x min(-1)), glucose at a variable rate to maintain plasma glucose near 5 mmol/l, and D-[6,6-2H2]glucose to measure HGP During the last 2 h, glucagon was infused at 1.5 ng x kg(-1) x min(-1). Eight nondiabetic people served as control subjects. RESULTS: During the glucagon infusion period, free plasma insulin levels in the diabetic subjects were 71.7+/-1.6 vs. 74.8+/-0.5 pmol/l after lispro and regular insulin treatment, with plasma glucagon levels of 88.3+/-1.8 and 83.7+/-1.5 ng/l for insulin:glucagon ratios of 2.8 and 3.0. respectively (NS). However, plasma glucose increased to 9.2+/-1.1 mmo/l after lispro insulin compared with 7.1+/-0.9 mmol/l after regular insulin (P < 0.01), and the rise in HGP was 5.7 +/-2.8 micromol x kg(-1) x min(-1) after lispro insulin versus 3.1+/-2.9 micromol x kg(-1) x min(-1) after regular insulin treatment (P=0.02). In the control subjects, HGP increased by 10.7+/-4.2 micromol x kg(-1) x min(-1) under glucagon infusion. CONCLUSIONS: Insulin lispro treatment by CSII was associated with a heightened response in HGP to glucagon compared with regular human insulin. This suggests that insulin lispro increases the sensitivity of the liver to glucagon and could potentially decrease the risk of severe hypoglycemia.  相似文献   

6.
BACKGROUND: In patients with type I diabetes mellitus, hypoglycemia occurs commonly during sleep and is frequently asymptomatic. This raises the question of whether sleep is associated with reduced counterregulatory-hormone responses to hypoglycemia. METHODS: We studied the counterregulatory-hormone responses to insulin-induced hypoglycemia in eight adolescent patients with type I diabetes and six age-matched normal subjects when they were awake during the day, asleep at night, and awake at night. In each study, the plasma glucose concentration was stabilized for 60 minutes at approximately 100 mg per deciliter (5.6 mmol per liter) and then reduced to 50 mg per deciliter (2.8 mmol per liter) and maintained at that concentration for 40 minutes. Plasma free insulin, epinephrine, norepinephrine, cortisol, and growth hormone were measured frequently during each study. Sleep was monitored by polysomnography. RESULTS: The plasma glucose and free insulin concentrations were similar in both groups during all studies. During the studies when the subjects were asleep, no one was awakened during the hypoglycemic phase, but during the final 30 minutes of the studies when the subjects were awake both the patients with diabetes and the normal subjects had symptoms of hypoglycemia. In the patients with diabetes, plasma epinephrine responses to hypoglycemia were blunted when they were asleep (mean [+/-SE] peak plasma epinephrine concentration, 70+/-14 pg per milliliter [382+/-76 pmol per liter]; P=0.3 for the comparison with base line), as compared with when they were awake during the day or night (238+/-39 pg per milliliter [1299+/-213 pmol per liter] P=0.004 for the comparison with base line, and 296+/-60 pg per milliliter [1616+/-327 pmol per liter], P=0.004, respectively). The patients' plasma norepinephrine responses were also reduced during sleep, whereas their plasma cortisol concentrations did not increase and their plasma growth hormone concentrations increased slightly. The patterns of counterregulatory-hormone responses in the normal subjects were similar. CONCLUSIONS: Sleep impairs counterregulatory-hormone responses to hypoglycemia in patients with diabetes and normal subjects.  相似文献   

7.
The present study was performed in 17 nondiabetic subjects and was initiated to determine whether enhanced adipose tissue lipolysis, either basal or catecholamine induced (isoproterenol), and/or resistance to insulin inhibition of isoproterenol-stimulated lipolysis were correlated with resistance to insulin-mediated glucose disposal by muscle. Insulin-mediated glucose disposal was assessed by determining the steady state plasma glucose (SSPG) concentration during the insulin suppression test [180 min infusion of somatostatin (350 micrograms/h), insulin (25 mU/m2min), and glucose (240 mg/m2.min)]. On another occasion, plasma FFA and glycerol concentrations were determined at the end of 3 sequential infusion periods (IP): IP1, somatostatin (350 micrograms/h) plus basal insulin replacement (5 mU/m2.min); IP2, somatostatin (350 micrograms/h), insulin (5 mU/m2.min), and isoproterenol (270 ng/m2.min); and IP3, somatostatin (350 micrograms/h), isoproterenol (270 ng/m2.min), and insulin (10 mU/m2.min). SSPG concentrations correlated with FFA concentrations during all 3 infusion periods after adjustment for age, gender, body mass index, insulin concentration, and ratio of waist to hip girth (IP1:r = 0.61; P < 0.03; IP2: r = 0.70; P < 0.01; IP3: r = 0.65; P < 0.02). Correlations between SSPG and glycerol concentrations were also highly statistically significant (IP1: r = 0.62; P < 0.03; IP2: r = 0.65; P < 0.02; IP3: r = 0.70; P < 0.01). These results demonstrate for the first time that plasma FFA and glycerol concentrations are increased commensurate with the degree of resistance to insulin-mediated glucose disposal at a basal insulin level, in response to isoproterenol stimulation, and after insulin inhibition of isoproterenol-stimulated lipolysis.  相似文献   

8.
In this study we measured simultaneously and sequentially the lumbar sympathetic nerve activity (LSNA) or renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), and heart rate (HR) in response to insulin with co-existing hypoglycemia or with glucose replacement in normal rats. Sinoaortic denervation (SAD) was used to evaluate the influence of the baroreflex. LSNA, RSNA, MAP and HR were determined using an acquisition processor and computer software. Bolus insulin infusion where the blood glucose was allowed to decrease resulted in an immediate decrease in MAP. The HR decreased for approximately 15 min and subsequently increased. The LSNA increased immediately after insulin infusion peaking at 25 minutes and then recovered toward baseline. Insulin infusion with glucose replacement resulted in a decrease in MAP and HR. The LSNA progressively increased and was maintained throughout the experimental period. Insulin infusion with hypoglycemia increased RSNA and when hypoglycemia was prevented the RSNA decreased. SAD attenuated the decrease in MAP and LSNA response to insulin. Thus, insulin acts to decrease MAP while simultaneously increasing HR, LSNA and RSNA when hypoglycemia is allowed to occur. However, insulin acts to decrease HR and RSNA when euglycemia is maintained. The insulin-induced increase in LSNA is modulated by the baroreflex mechanism. We conclude that insulin has independent direct and indirect effects on LSNA, RSNA, MAP and HR that are modulated by glycemia and the baroreflex.  相似文献   

9.
To examine the mechanism by which free fatty acids (FFA) induce insulin resistance in human skeletal muscle, glycogen, glucose-6-phosphate, and intracellular glucose concentrations were measured using carbon-13 and phosphorous-31 nuclear magnetic resonance spectroscopy in seven healthy subjects before and after a hyperinsulinemic-euglycemic clamp following a five-hour infusion of either lipid/heparin or glycerol/heparin. IRS-1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity was also measured in muscle biopsy samples obtained from seven additional subjects before and after an identical protocol. Rates of insulin stimulated whole-body glucose uptake. Glucose oxidation and muscle glycogen synthesis were 50%-60% lower following the lipid infusion compared with the glycerol infusion and were associated with a approximately 90% decrease in the increment in intramuscular glucose-6-phosphate concentration, implying diminished glucose transport or phosphorylation activity. To distinguish between these two possibilities, intracellular glucose concentration was measured and found to be significantly lower in the lipid infusion studies, implying that glucose transport is the rate-controlling step. Insulin stimulation, during the glycerol infusion, resulted in a fourfold increase in PI 3-kinase activity over basal that was abolished during the lipid infusion. Taken together, these data suggest that increased concentrations of plasma FFA induce insulin resistance in humans through inhibition of glucose transport activity; this may be a consequence of decreased IRS-1-associated PI 3-kinase activity.  相似文献   

10.
Disruption of intraislet mechanisms could account for the impaired glucagon response to hypoglycemia in type 1 diabetes. However, in contrast to animals, there is conflicting evidence that such mechanisms operate in humans. We have used i.v. tolbutamide (T) (1.7 g bolus + 130 mg/h infusion) to create high portal insulin concentrations and compared this with equivalent hypoglycemia using an i.v. insulin infusion (I) (30 mU/m2 x min). Ten normal subjects underwent two hypoglycemic clamps; mean glucose; I (53 +/- 1 mg/dL); and T (53 +/- 1 mg/dL) (2.9 +/- 0.04 mmol/L vs. 2.9 +/- 0.05 mmol/L), held for 30 min. During hypoglycemia, mean peripheral insulin levels were greater with I (59 +/- 4 mU/L) than T (18 +/- 3 mU/L), P < 0.001. Calculated peak portal insulin concentrations were greater during T (282 +/- 28 mU/L) than I (78 +/- 4 mU/L), P < 0.00005. The demonstration of a reduced glucagon response during T-induced hypoglycemia (111 +/- 8 ng/L vs. 135 +/- 12 ng/L, P < 0.05) with higher portal insulin concentrations suggests that intraislet mechanisms may contribute to the release of glucagon during hypoglycemia in man.  相似文献   

11.
OBJECTIVE: To compare and contrast the pharmacokinetics and glucodynamics of two insulin mixtures, one of 50% NPH human insulin and 50% Regular human insulin (50/50) and one of 70% NPH human insulin and 30% Regular human insulin (70/30), in healthy male volunteers after subcutaneous administrations of 0.3 U/kg. RESEARCH DESIGN AND METHODS: We administered single doses of 50/50 and 70/30 insulins to 18 volunteers in a randomized crossover fashion. All subjects received 0.3 U/kg of each mixture separated by at least 7 days. Each dose was given after an overnight fast and during a glucose clamp to maintain a euglycemic state. We measured serum insulin and C-peptide concentrations through frequent blood sampling after each treatment. Pharmacokinetic measurements were calculated from insulin data corrected for C-peptide, including maximum insulin concentration (Cmax), time to maximum insulin concentration (tmax), terminal rate constant (beta), area under the curve from 0 to infinity (AUCinfinity0), and mean residence time (MRT). Pharmacodynamic measurements were summarized from C-peptide concentrations (minimum C-peptide concentration [Cmin], time to minimum C-peptide concentration [tmin], area between the C-peptide baseline and the C-peptide suppression curve [AOCc], absolute maximal difference from baseline [Sdiff] and glucose clamp measurements. The glucose clamp measurements included maximum infusion rates (Rmax) and time to Rmax (TRmax) from glucose infusion rate (GIR) documentation, as well as cumulative glucose infused during the first 4 h ((0)4Gtot) and total glucose infused (Gtot) during the study. RESULTS: For the pharmacokinetic assessment, statistically greater values of insulin Cmax and beta were found for the 50/50 mixture, whereas the 70/30 mixture had a greater MRT. Statistical differences were also detected in glucodynamics, with greater values of Rmax and (0)4Gtot found with the 50/50 mixture. Notably, differences were not detected for insulin AUCinfinity0 and Gtot values. CONCLUSIONS: Higher insulin concentrations and a greater initial response were present with the 50/50 mixture, but the two mixtures had equivalent bioavailability and cumulative effects. These results support use of the 50/50 mixture in situations where greater initial glucose control is required.  相似文献   

12.
OBJECTIVE: To evaluate further the relative roles played by liver and adipose tissue in the therapeutic response to metformin in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS: A total of 11 patients with diet-treated type 2 diabetes were given metformin for approximately 3 months. Measurements were made before and after treatment of 1) fasting and postprandial plasma glucose, insulin, and free fatty acid (FFA) concentrations; 2) glucose appearance (Ra) and disappearance (Rd) rates measured overnight with 3-[3H]glucose; and 3) plasma FFA concentrations during a 195-min infusion period at relatively low insulin (approximately 12-24 microU/ml) concentrations. RESULTS: Mean +/- SEM fasting plasma glucose concentration was significantly lower (175 +/- 11 vs. 224 +/- 15 mg/dl; P < 0.01) after treatment with metformin. Mean +/- SEM insulin concentrations measured from 8:00 A.M. to 5:00 P.M. did not change with treatment. However, both glucose and FFA concentrations were significantly lower (P < 0.01) when measured over the same time period, and the decreases in plasma FFA and glucose concentration were highly correlated (r = 0.81; P = 0.03). Overnight glucose turnover studies indicated that neither Ra (hepatic glucose production [HGP]) nor Rd changed significantly with treatment in association with metformin treatment. Since plasma glucose concentration was much lower after metformin treatment, the overnight glucose metabolic clearance rate (MCR) was significantly lower (P < 0.01). Finally, the ability of insulin to inhibit isoproterenol-stimulated increases in plasma FFA concentration was enhanced in metformin-treated patients (P < 0.05). CONCLUSIONS: Metformin treatment was associated with significantly lower fasting plasma glucose concentrations and lower day-long plasma glucose and FFA concentrations. Although overnight HGP was unchanged after treatment with metformin, the overnight glucose MCR was significantly increased, and the antilipolytic activity of insulin was also enhanced. Given these findings, it is suggested that at least part of the antihyperglycemic effect of metformin is due to a decrease in release of FFA from adipose tissue, leading to lower circulating FFA concentrations and an increase in glucose uptake.  相似文献   

13.
PURPOSE: To examine the mechanism of the decreased frequency of severe hypoglycemia with implantable pump therapy compared with subcutaneous intensive therapy. PATIENTS AND METHODS: Eight subjects with insulin-dependent diabetes mellitus (IDDM), enrolled in an implantable insulin pump study, were admitted to the General Clinical Research Center and on 2 separate days were given either a dose of preprandial insulin chosen to maintain normoglycemia for a standard (450 kcal, 50% carbohydrate) breakfast or 1.75 times the dose. The two doses were administered subcutaneously (by syringe or with an external pump) during one inpatient admission and by implantable pump (intraperitoneally, n=6; or intravenously, n=2) during a separate admission. Blood glucose, plasma-free insulin, and neurocognitive function were measured for 4 hours after the meal. RESULTS: Subcutaneous administration resulted in 7 episodes of hypoglycemia (2 with the usual dose and 5 with the 1.75-fold dose), defined as blood glucose less than 50 mg/dL; implantable pump treatment resulted in only 2 episodes, both with the 1.75-fold dose (P <0.05, Fisher's two-tailed test for implantable versus subcutaneous). Compared with subcutaneous delivery, implantable pump therapy provided significantly lower insulin levels during the final 2 hours after administration of the usual dose and the 1.75-fold dose (P <0.005). In addition to the decreased frequency of hypoglycemia, implantable pump therapy resulted in significantly lower area under the glycemia curve during the first 120 minutes with the 1.75-fold dose compared with subcutaneous administration. CONCLUSIONS: The lower frequency of severe hypoglycemia with intensive therapy administered by implantable pump therapy is explained by the more rapid clearance of insulin delivered intraperitoneally or intravenously compared with intensive subcutaneous injection regimens. The lower frequency of severe hypoglycemia with implantable pump therapy compared with subcutaneous therapy demonstrated in clinical trials is confirmed by this study, in which we attempted to induce hypoglycemia.  相似文献   

14.
1. This study aimed to differentiate effects of insulin and hypoglycemia on sensory brain stem functions in humans. Auditory brain stem responses (ABR) were examined in 30 healthy men during euglycemia and after 20 and 50 min of steady-state hypoglycemia of 2.6 mM induced with human insulin (HI) in one session and porcine insulin (PI) in another session. 2. Levels of blood glucose and serum insulin were identical in both sessions during HI and PI infusion. 3. Hypoglycemia increased interpeak latencies III-V (+71 microseconds; P < 0.001) and I-V (+123 microseconds; P < 0.001), whereas changes in the latency of wave I were not significant. 4. After 20 min of constant hypoglycemia, increases in the interpeak latencies I-V and III-V were significantly more pronounced during infusion of PI than HI. These differences disappeared with time spent in hypoglycemia, i.e., after 50 min of hypoglycemia. 5. Apart from the delaying effect of hypoglycemia on neuronal transmission within the sensory brain stem, the results provide evidence for a separate influence of insulin on these functions.  相似文献   

15.
Previous studies have shown that hypoglycemia may reduce counterregulatory responses to subsequent hypoglycemia in healthy subjects and in patients with diabetes. The effect of hypoglycemia on the hormonal response to a nonhypoglycemic stimulus is uncertain. To test the hypothesis that the cortisol response to corticotropin (ACTH) infusion is independent of antecedent hypoglycemia, 10 healthy subjects received a standard ACTH infusion (0.25 mg Cosyntropin [Organon, West Orange, NJ] intravenously over 240 minutes) at 8:00 AM on day 1 and day 3 and a hypoglycemic insulin clamp study (1 mU/kg/min) at 8:00 AM on day 2. During the hypoglycemic clamp, plasma glucose decreased from 5.0 mmol/L to 2.8 mmol/L for two periods of 120 minutes (mean glucose, 2.9 +/- 0.03 and 2.8 +/- 0.02 mmol/L, respectively) separated by a 60-minute interval of euglycemia (mean glucose, 4.7 +/- 0.01 mmol/L). Seven subjects also had paired control studies in random order during which a 330-minute euglycemic clamp (mean glucose, 5.0 +/- 0.11 mmol/L) instead of a hypoglycemic clamp was performed on day 2. Basal ACTH (4.6 +/- 0.7 v 2.6 +/- 0.4 pmol/L, P < .02) and basal cortisol (435 +/- 46 v 317 +/- 40 nmol/L, P < .02) both decreased from day 1 to day 3 following intervening hypoglycemia. In contrast, with intervening euglycemia, neither basal ACTH (5.9 +/- 1.5 v 4.5 +/- 1.0 pmol/L) nor basal cortisol (340 +/- 38 v 318 +/- 60 nmol/L) were reduced significantly on day 3 compared with day 1. Following interval hypoglycemia, the area under the curve (AUC) for the cortisol response to successive ACTH infusions was increased (4,734 +/- 428 nmol/L over 240 minutes [day 3] v 3,526 +/- 434 nmol/L over 240 minutes [day 1], P < .01). The maximum incremental cortisol response was also significantly increased (805 +/- 63 nmol/L (day 3) v 583 +/- 58 nmol/L (day 1), P < .05). In contrast, the AUC for the cortisol response to successive ACTH infusions with interval euglycemia (3,402 +/- 345 nmol/L over 240 minutes [day 3] v 3,709 +/- 391 nmol/L over 240 minutes [day 1] and the incremental cortisol response (702 +/- 62 nmol/L [day 3] v 592 +/- 85 nmol/L [day 1] were unchanged. Following exposure to intermittent hypoglycemia in healthy humans, fasting morning ACTH and cortisol levels are reduced and the incremental cortisol response to an infusion of ACTH is enhanced. The enhanced cortisol response to exogenous ACTH infusion after intervening hypoglycemia (but not intervening euglycemia) may reflect priming of the adrenal gland by endogenous ACTH produced during the hypoglycemia. These data suggest that adrenal function testing by exogenous ACTH administration is not impaired by prior exposure to hypoglycemia. Moreover, the reduced cortisol response to recurrent hypoglycemia in patients with well-controlled diabetes is not likely the result of impaired adrenal responsiveness.  相似文献   

16.
Serum glucose and plasma C-peptide response to i.v. glucagon administration was evaluated in 24 healthy dogs, 12 dogs with untreated diabetes mellitus, 30 dogs with insulin-treated diabetes mellitus, and 8 dogs with naturally acquired hyperadrenocorticism. Serum insulin response also was evaluated in all dogs, except 20 insulin-treated diabetic dogs. Blood samples for serum glucose, serum insulin, and plasma C-peptide determinations were collected immediately before and 5, 10, 20, 30, and (for healthy dogs) 60 minutes after i.v. administration of 1 mg glucagon per dog. In healthy dogs, the patterns of glucagon-stimulated changes in plasma C-peptide and serum insulin concentrations were identical, with single peaks in plasma C-peptide and serum insulin concentrations observed approximately 15 minutes after i.v. glucagon administration. Mean plasma C-peptide and serum insulin concentrations in untreated diabetic dogs, and mean plasma C-peptide concentration in insulin-treated diabetic dogs did not increase significantly after i.v. glucagon administration. The validity of serum insulin concentration results was questionable in 10 insulin-treated diabetic dogs, possibly because of anti-insulin antibody interference with the insulin radioimmunoassay. Plasma C-peptide and serum insulin concentrations were significantly increased (P < .001) at all blood sampling times after glucagon administration in dogs with hyperadrenocorticism, compared with healthy dogs, and untreated and insulin-treated diabetic dogs. Five-minute C-peptide increment, C-peptide peak response, total C-peptide secretion, and, for untreated diabetic dogs, insulin peak response and total insulin secretion were significantly lower (P < .00l) in diabetic dogs, compared with healthy dogs, whereas these same parameters were significantly increased (P < .01) in dogs with hyperadrenocorticism, compared with healthy dogs, and untreated and insulin-treated diabetic dogs. Although not statistically significant, there was a trend for higher plasma C-peptide concentrations in untreated diabetic dogs compared with insulin-treated diabetic dogs during the glucagon stimulation test. Baseline C-peptide concentrations also were significantly higher (P < .05) in diabetic dogs treated with insulin for less than 6 months, compared with diabetic dogs treated for longer than 1 year. Finally, 7 of 42 diabetic dogs had baseline plasma C-peptide concentrations greater than 2 SD (ie, > 0.29 pmol/mL) above the normal mean plasma C-peptide concentration; values that were significantly higher, compared with the results in healthy dogs (P < .001) and with the other 35 diabetic dogs (P < .001). In summary, measurement of plasma C-peptide concentration during glucagon stimulation testing allowed differentiation among healthy dogs, dogs with impaired beta-cell function (ie, diabetes mellitus), and dogs with increased beta-cell responsiveness to glucagon (ie, insulin resistance). Plasma C-peptide concentrations during glucagon stimulation testing were variable in diabetic dogs and may represent dogs with type-1 and type-2 diabetes or, more likely, differences in severity of beta-cell loss in dogs with type-1 diabetes.  相似文献   

17.
OBJECTIVE: To determine the effect of a continuous insulin infusion on protein and glucose metabolism in extremely low birth weight (ELBW) infants. STUDY DESIGN: We measured the rate of appearance (Ra) of the essential amino acids leucine and phenylalanine (reflecting proteolysis), utilization of phenylalanine for protein synthesis, and glucose Ra using stable isotope tracers during a basal infusion of glucose (6 mg/kg/min) and in response to a continuous infusion of insulin (0.05 U/kg/hr) by means of the euglycemic hyperinsulinemic clamp technique. Four clinically stable, euglycemic ELBW infants (26 +/- 0 weeks' gestation, 894 +/- 44 gm birth weight, 2.8 +/- 0.8 days of age) were studied. RESULTS: In response to a greater than tenfold increase in insulin concentration (from 7 +/- 2 to 79 +/- 13 microU/ml), there was a 20% decrease in leucine Ra (Basal: 272 +/- 27 mumol/kg/hr; Insulin: 226 +/- 29 mumol/kg/hr; p < 0.01) and in phenylalanine Ra (Basal: 91 +/- 5 mumol/kg/hr; Insulin: 72 +/- 2 mumol/kg/hr; p < 0.05). Use of phenylalanine for protein synthesis also decreased by a similar magnitude (Basal: 77 +/- 4 mumol/kg/hr; Insulin: 62 +/- 1 mumol/kg/hr; p < 0.05). Glucose utilization doubled (from 8 +/- 0.9 to 15.7 +/- 1.1 mg/kg/min; p = 0.0003) and plasma lactate concentrations tripled (from 2.1 +/- 0.5 to 5.7 +/- 1.0 mmol/L; p < 0.05) during the insulin infusion. CONCLUSIONS: During an infusion of glucose alone, pharmacologic concentrations of insulin in ELBW infants produced no net protein anabolic effect. Furthermore, euglycemic hyperinsulinemia was accompanied by development of significant metabolic acidosis.  相似文献   

18.
OBJECTIVE: To assess the effect on various aspects of carbohydrate and lipid metabolism of administering a quick-release formulation of bromocriptine (Ergoset) to obese, nondiabetic, hyperinsulinemic women. RESEARCH DESIGN AND METHODS: Hourly concentrations of prolactin, glucose, insulin, free fatty acid (FFA), and triglyceride were measured for 24 h before and after approximately 8 weeks of treatment with Ergoset. In addition, fasting lipid and lipoprotein concentrations and the steady-state plasma glucose (SSPG) concentration in response to a continuous infusion of somatostatin, insulin, and glucose were determined before and after Ergoset administration. RESULTS: Circulating prolactin concentrations were dramatically decreased (P < 0.001) following treatment, associated with a significant fall (P < 0.05) in 24-h-long plasma glucose, FFA, and triglyceride concentrations. Neither circulating plasma insulin concentrations nor the ability of insulin to mediate glucose disposal changed with treatment. Finally, fasting total cholesterol fell (P < 0.05) and the ratio of total to HDL cholesterol decreased (P = 0.06) in association with Ergoset treatment. CONCLUSIONS: The fact that significant metabolic improvement was seen in the obese nondiabetic hyperinsulinemic women studied suggests that Ergoset could be of therapeutic benefit in clinical conditions of hyperglycemia and/or dyslipidemia.  相似文献   

19.
This neonate developed marked hyperglycemia four days after birth and required insulin therapy for eight weeks. During the acute phase of the disease, immunoreactive insulin was undetectable in portal venous serum. Neither tolbutamide nor theophylline administration significantly triggered insulin secretion. Somatostatin infusion inhibited growth hormone release but had no effect on plasma glucagon or blood glucose concentrations. At 2 1/2 months, two weeks after insulin withdrawal, the infant was still intolerant to an oral glucose load, insulin response was markedly delayed, and growth hormone secretion was paradoxical. At five months, the insulin, glucagon, and growth hormone responses to glucose and to somatostatin were normalized. Thus, in this patient, insulin secretion was transiently deficient. Peculiarities of glucagon and growth hormone secretion were also present but are more characteristic of this age group than of diabetes. The hyperglycemic state was managed by intraportal infusion of 0.1 to 0.2 IU regular insulin/kg/hour. This mode of insulin administration proved efficient, secure, and easy to manage.  相似文献   

20.
OBJECTIVE: The assay of dried blood spots on filter paper to determine blood glucose concentration has been used to detect hypoglycaemia in out patients. We assessed the accuracy of this approach in assaying blood glucose concentrations in the hypoglycaemic range. DESIGN: Volunteers were rendered hypoglycaemic by intravenous infusion of insulin. The glucose concentration in simultaneously taken blood samples was measured either fresh or after drying on filter paper. PATIENTS: Twenty-four healthy young volunteers and 9 patients with insulin-dependent diabetes were studied. MEASUREMENTS: Plasma glucose concentrations were measured using a standard auto analyser glucose oxidase method. Whole blood taken simultaneously was placed on prepared filter paper and allowed to dry; glucose concentration was then measured using a well-established technique. A correction factor was applied to convert the glucose concentration of plasma to that of whole blood. The relationship between glucose concentrations measured by the two methods was determined by regression coefficient. RESULTS: In the unequivocally hypoglycaemic range (plasma < or = 2.5 mmol/l), corrected dried blood spot glucose concentrations significantly correlated with standard plasma glucose concentrations (r = 0.81; P < 0.001). The dried blood spot method had a sensitivity of 91%. In the range designated probable hypoglycaemia (plasma < or = 3.3 mmol/l), there was also significant correlation (r = 0.90; P < 0.001) and the sensitivity was 96%. The specificity of the dried blood spot method was 100% in both ranges. CONCLUSIONS: Measurement of glucose concentrations in dried blood spots is specific and sensitive in the hypoglycaemic range. The present study indicates that hypoglycaemia may be excluded or confirmed respectively when levels in excess of 3.7 or below 2.8 mmol/l are found in uncorrected dried blood spot analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号