首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
对用直流等离子体化学气相沉积(DC-PCVD)法得到的非晶态氮化硅薄膜结构与性能进行了研究。对氮化硅薄膜的表面显微硬度和剖面显微硬度进行了测试,并对非晶态氮化硅硬度高于晶态氮化硅硬度的原因进行了探讨  相似文献   

2.
徐文国  金钦汉 《真空》1989,(6):54-60
本文将对等离子体的性质、等离子体对化学气相沉积的作用、PCVD反应器以及 新近发展起来的微波等离子体化学气相沉积法(MPCVD)的特点和应用作一综述。期 望引起国内同行对这一崭新领域的关注,把我国PCVD特别是MPCVD的研究工 作推向前进。  相似文献   

3.
采用微波等离子体化学气相沉积法(MPCVD),使用高纯N2(99.999%)和CH4(99.9%)作反应气体,在多晶Pt(99.99%)基片上沉积C3N4薄膜。X射线能谱(EDX)分析结果表明N/C原子比为1.0~1.4,接近C3N4的化学比;X射线衍射谱(XRD)说明薄膜主要由β-和α-C3N4组成;X射线光电子谱(XPS)、傅立叶变换红外谱(FT-IR)和喇曼(Raman)谱说明在C3N4薄膜  相似文献   

4.
薄膜沉积中基片的清洗方法探讨   总被引:2,自引:0,他引:2  
随着科学技术的发展,人们对材料的性能要求也愈来愈严格,有些性能往往很难用常规的工艺手段同时在一种材料母体上实现,因而用气相沉积的方法如化学气相沉积(CVD)、物理气相沉积(PVD)等在材料表面上涂敷一层薄膜是赋于材料某些特殊的功能的一种比较理想的途径...  相似文献   

5.
以N2,CH4作为反应气体,采用微波等离子体化学气相沉积法(MPCVD)进行碳氮膜的合成研究。通过控制反应温度、气体流量、微波功率、反应气压,在Si(111)和Si(100)基底上气相合成β-C3N4晶态薄膜。扫描电子显微镜(SERM)下观察到生长在Si基底上的薄膜具有六角晶棒的密结构。EDX分析胡沉积条件的不同,六角晶棒中N/C在1.0~2.0之间。X射线衍射分析(XRD)发现薄膜中含有β-C3  相似文献   

6.
溶胶—凝胶法制备Al^3+离子掺杂型ZnO薄膜与评价   总被引:11,自引:0,他引:11  
姜海青  王连星 《功能材料》2000,31(3):278-280
采用溶胶-凝胶(Sol-Gel)工艺在普通Na-Ca-Si玻璃基体上成功地制备出高c轴择优取向性、高可见光透光率以及高电导率的Al^3+离子掺杂型ZnO薄膜。利用SEM、XRD以及UVS光谱仪等分析方法对不同工艺下制备的薄膜进行了研究,结果显示,所制备的薄膜为纤锌矿型结构,表面均匀、致密、薄膜材料晶粒尺寸大约为50-200nm左右,薄膜可见光透光率最大可达99%;对薄膜的厚度以及电学性能进行了测定  相似文献   

7.
涂层与薄膜技术9904001用物理气相沉积(PVD)技术制备耐蚀薄膜———ShawB.ProceedingsoftheCorosion,1997,311(英文)物理气相沉积(PVD)技术(如溅射、蒸镀等)越来越普遍用于提高特殊工程零部件的表面性能,包...  相似文献   

8.
沉积气压对MW—PCVD制备金刚石薄膜的影响   总被引:2,自引:0,他引:2  
利用石英钟罩式微波等离子体化学气相沉积(MW-PCVD)实验装置研究了不同沉积气压对金刚石薄膜沉积结果的影响。扫描电子显微镜(SEM)显微形貌观察及喇曼光谱(RAMAN)分析表明沉积气压的提高有利于改善MW-PCVD制备金刚石薄膜的质量。  相似文献   

9.
APCVD制备氮化硅薄膜的微观结构   总被引:2,自引:0,他引:2  
杨辉  丁新更  孟祥森 《功能材料》2000,31(6):635-636
以SiH4和NH3作为反应气体,用常压化学气相沉积(APCVD)法在平板玻璃表面制备出了氮化硅薄膜,研究氮化硅薄膜的形貌和微观结构,研究结果表明:在660℃温度所获得的氮化硅薄膜为非晶态,氮化硅薄膜与平板玻璃基板之间的界有熔焊现象,结合牢固。  相似文献   

10.
MPCVD合成β—C3N4晶态薄膜   总被引:1,自引:0,他引:1  
时东霞  顾有松 《真空》1999,(1):18-22
采用微波等离子体化学气相沉积法(MPCVD),以N2,CH4作为反应气体合成碳氢膜。通过控制反应温度,气体流量,微波功率,反应气压等工艺条件在Si和Pt基片上,进行β-C3N4晶态薄膜的合成研究。扫描电镜下观察到生长在Si基底上的薄膜晶有六角晶棒的密排结构。扫描隧道显微镜下观察到在Pg基底上生长的碳氮薄膜由针状晶粒组成。  相似文献   

11.
Four mechanical parameters of physical vapor-deposited (PVD) hard coatings were obtained, which were the residual strain, Young's modulus, film toughness, and interface toughness, concerning titanium aluminum nitride (TiAlN) and titanium nitride (TiN) coatings deposited on WC-Co substrates. The results were quantitatively compared with the author's previous trials for the case of chemical vapor-deposited (CVD) diamond coatings. Due to the significant difference in the mechanical properties between PVD hard coatings and CVD diamond coatings, it was necessary to develop new experimental techniques, which could properly evaluate those parameters for the case of PVD hard coatings. As a conclusion, film toughness of PVD hard coatings was surprisingly brittle. It was an order of magnitude smaller than that of CVD diamond coatings. In contrast, no significant difference was found in interface toughness between these different kinds of coatings. Concerning the residual strain, TiN had far larger level than the other two. These differences in mechanical properties were further discussed in relation to the difference in their wear behavior.  相似文献   

12.
Refractory compound coatings prolong the life of cemented carbide inserts. The structure of these coatings is vastly different when the same coating is produced by chemical vapor deposition (CVD) and physical vapor deposition (PVD) methods. TiC and HfN coatings were applied to cemented carbide tools by both CVD and PVD processes. The coated inserts were tested under interrupted cutting conditions using slotted bar tests. The CVD-coated inserts failed after a few (less than 100) cycles whereas the PVD-coated inserts lasted well past 2000 cycles without failure as did the uncoated inserts. PVD coatings have a much greater fracture toughness than CVD coatings due to their very fine-grained microstructure with a distribution of fine cavities which act as crack stoppers. In contrast, CVD coatings have a fully dense microstructure with a large grain size which does not have much fracture toughness. Another reason for the difference in behavior is the much lower deposition temperature (about 500°C) used in the PVD process as compared with the much higher deposition temperature (about 1000°C) used in the CVD process. Chemical attack of the cemented carbide substrate occurs at high deposition temperatures, thus weakening the area near the coating-substrate interface.  相似文献   

13.
New Developments in Preparation of Hard Material Coatings by Plasma CVD In this paper, the technique for the preparation of hard material coatings using a D.C. Plasma is described. Two methods are used: One is direct current (D.C.) non-pulsed glow discharge method and the other is pulsed D.C. glow discharge method. It has been shown that the temperature in chemical vapour deposition (CVD) of TiN can be reduced from about 1000°C in conventional CVD to about 500–600°C by the application of a D.C. non-equilibrium plasma. Emphasis is placed on the new design concept for industrial application by using a pulsed D.C. power source and auxiliary heating device. The structures of the TiN coatings obtained at 600 °C are analysed by means of electron microscope and X-ray diffraction methods. The film deposition rate is 1–3 μm/h. It is concluded that plasma assisted CVD of hard material coatings offers a superior alternative to the conventional CVD method.  相似文献   

14.
Chemical Vapor Deposition (CVD) of TiN coatings has been analyzed at three different length scales: (a) At chemical reactor length scale, by solving the appropriate reactive-gas, fluid-dynamics, heat-transfer boundary value problem; (b) At the atomic scale, by applying a kinetic Monte Carlo method to model the deposition process in a stochastic manner and (c) At the coating-grain scale, by employing an improved van der Drift-type model to simulate the evolution of surface morphology, grain size distribution, evolution of the morphological and crystallographic texture, etc. in polycrystalline TiN coatings. It has shown that by combining the three modeling schemes, one can establish a direct link between the processes parameters and the microstructure (and thus the properties) of as CVD-grown TiN coatings. This, in turn, enables optimization of both the coating deposition process, and the microstructure and properties of CVD-grown coatings.  相似文献   

15.
SiC纤维表面(BN-SiC)n复合涂层的制备及单丝拉伸性能   总被引:1,自引:0,他引:1       下载免费PDF全文
为制备出理想的连续纤维增韧陶瓷复合材料界面相,利用化学气相沉积(CVD)工艺在SiC纤维表面连续制备出三种类型的(BN-SiC)n复合界面涂层,对其进行微观结构表征,并通过单丝拉伸测试研究不同涂层对纤维单丝拉伸性能的影响。结果表明:SiC纤维表面沉积的(BN-SiC)n涂层较为均匀致密。单丝拉伸强度随着涂层层数的增加而降低。单层BN涂层的SiC纤维具有最高的单丝强度保持率(70%)和最大的拉伸伸长率(2.3%)。具有(BN-SiC)1与(BN-SiC)2复合涂层的SiC纤维单丝的拉伸性能相比原始SiC纤维有明显下降,拉伸强度保持率分别是42.1%和32.3%。  相似文献   

16.
Applications of hard protective nanocomposite coatings are frequently limited by insufficient adhesion related to high stress. In the present work, we study the effect of an intermediate Cr layer on top of the stainless steel 410 (SS410) substrate on the performance of the nanocomposite (nc) TiN-based coatings prepared by plasma enhanced chemical vapor deposition. The Cr layer was found to enhance the corrosion resistance of the SS410 substrate by a factor of 280 in terms of corrosion current, and to increase adhesion of the TiN coating by a factor of 4. We show that for the nc-TiN/a-SiNx and nc-TiCN/a-SiCN coatings, the substantial improvement of the corrosion resistance can be attributed to the combination of the inertness of the Cr layer, and of the densely packed homogeneous nc structure of the nc coatings containing Si and/or C in comparison to columnar crystalline TiN coatings.  相似文献   

17.
化学气相沉积SiC涂层生长过程分析   总被引:4,自引:0,他引:4  
以高纯石墨为沉积基体,MTS为先驱体原料,在负压条件下沉积了CVD SiC涂 层.利用SEM和XRD分别对涂层的形貌及晶体结构进行了表征,SiC涂层表面呈菱柱状, (111)面为择优取向面.利用高分辨透射电镜对涂层与基体的界面结构、涂层的显微结构进行 了研究,得出CVD SiC涂层生长过程如下:SiC最初是沿着石墨基体的晶面取向开始生长 的}随后经历一段取向淘汰及调整的过程后,开始(111)晶面的生长.  相似文献   

18.
Sequential flow chemical vapor deposition (SFCVD), utilizing TiCl4/NH3 as reactants and immediate NH3 treatment after film deposition, is applied to produce TiN barrier films in the contact process. Secondary ion mass spectroscopy results indicate that the SFCVD TiN film can effectively block the diffusion of WF6 into the underlying Ti layer during W deposition. NH3 treatment immediately after film deposition causes SFCVD TiN films to be less contaminated with carbon than TiN films that are formed by metallic organic compounds chemical vapor deposition (MOCVD) and to contain less chlorine residue than conventional TiCl4/NH3 CVD TiN layers even at a low reaction temperature. According to the resistance measurement of Kelvin contacts, the SFCVD process yields a lower resistance and a more uniform distribution than the MOCVD or CVD process. Transmission electron microscopic observations demonstrate that WF6 can diffuse through the MOCVD TiN to react with the underlying Ti layer, causing a rupture at the Ti/TiN interface and poor W adhesion. The SFCVD TiN can serve as a sufficient diffusion barrier against WF6 penetration during W CVD deposition.  相似文献   

19.
利用ZrCl4-Ar-CH4-H2体系,采用化学气相沉积法(CVD)制备了ZrC涂层。研究了不同基底、沉积温度、先驱体中CH4与ZrCl4浓度比(C/Zr)对涂层形貌、物相和组分的影响规律和作用机制。结果表明,不同基底对该体系沉积的ZrC涂层形貌没有显著影响。沉积温度对ZrC涂层形貌影响较大,当温度从1100℃增加到1350℃时,涂层形貌由片状转变到荔枝状,且涂层中的C含量随温度的升高而增加。先驱体中的C/Zr比对涂层形貌和组分也有重要影响,当C/Zr比从8.5减小到3.5时,涂层由疏松多孔形貌经菜花状向玻璃态形貌演变,且涂层中的C含量随C/Zr比的减小而减少。  相似文献   

20.
TiB2, TiC and TiN protective coatings have been deposited onto SiC monofilament fibers by the CVD technique using a cold-wall reactor at reduced pressure. The effect of deposition conditions on the morphology, microstructure, phase composition and adherence of the coatings were studied. The physical and chemical compatibility of these ceramic coatings with SiC filaments together with titanium-alloy matrices were assessed and compared. Dense and uniform TiB2 coatings have been deposited successfully onto SiC monofilaments. The coating is stable on the SiC fiber and acts as an effective: barrier against the vigorous SiC/Ti-6Al-4V interfacial reaction. The adhesion of TiC on SiC fibers is comparatively weaker than the TiB2 coating. There was no significant reaction found at the interface of TiC/Ti except at the interface of TiC/SiC. Examination of the TiN coatings showed severe cracking and spalling, hence TiN could not provide protection in a Ti-alloy matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号