首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] inhibited DNA synthesis in transformed mouse keratinocytes (Pam212) in a time- and dose-dependent manner as measured by [3H]thymidine incorporation. To investigate the mechanism through which 1,25-(OH)2D3 acts, we examined its effects on Pam212 cells further transformed with the E1A oncogene. Here, we show that transformation of the cells with the E1A oncogene induced resistance to the effects of 1,25-(OH)2D3 on inhibition of growth of Pam212 cells. While 1,25-(OH)2D3 treatment increased the level of expression of vitamin D receptor mRNA 20-fold in parental cells, the E1A-transformed cells failed to express vitamin D receptor mRNA even after treatment with 1,25-(OH)2D3. Transfection of the E1A-transformed cell line with an expression construct encoding the vitamin D receptor restored receptor expression as well as the inhibition of growth by 1,25-(OH)2D3. These results suggest that one of the mechanisms for acquisition of 1,25-(OH)2D3 resistance induced by E1A may involve loss of vitamin D receptor inducibility by 1,25-(OH)2D3.  相似文献   

6.
7.
8.
9.
10.
We examined expression of the 1,25-dihydroxyvitamin D3 [1,25-(OH)2 D3] receptors in chromaffin cells of the adrenal medulla and the effects of 1,25(OH)2 D3 on expression of the tyrosine hydroxylase (TH) gene. Accumulation of 1,25(OH)2 D3 in the nuclei of adrenal medullary cells, but not in the adrenal cortex, was observed in mice intravenously injected with radioactively labeled hormone. 1,25(OH)2 D3 produced concentration-dependent increases in the TH mRNA levels in cultured bovine adrenal medullary cells (BAMC). The maximal increases (2-3-fold) occurred at 10(-8) M 1,25(OH)2 D3. Combined treatment with 1,25(OH)2 D3 and 20 microM nicotine had no additive effect on TH mRNA levels suggesting that transsynaptic (nicotinic) and vitamin D (hormonal) stimulation of TH gene expression are mediated through converging mechanisms. Induction of TH mRNA by 1,25(OH)2 D3 was not affected by calcium antagonist TMB-8. By increasing expression of the rate limiting enzyme in the catecholamine biosynthetic pathway, 1,25-(OH)2 D3 may participate in the regulation of catecholamine production in adrenal chromaffin cells. This regulation provides mechanisms through which 1,25(OH)2 D3 may control response and adaptation to stress.  相似文献   

11.
Human and murine osteocalcin genes demonstrate similar cell-specific expression patterns despite significant differences in gene locus organization and sequence variations in cis-acting regulatory elements. To investigate whether differences in these regulatory regions result in an altered response to 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] in vivo, we compared the response of the endogenous mouse osteocalcin gene to a bacterial reporter gene directed by flanking regions of the human osteocalcin gene in transgenic mice. Transgene expression colocalized with endogenous osteocalcin expression in serial sections, being detected in osteoblasts, osteocytes and hypertrophic chondrocytes. In calvarial cell culture lysates from transgenic and nontransgenic mice, the endogenous mouse osteocalcin gene did not respond to 1,25-(OH)2D3 treatment. Despite this, transgene activity was significantly increased in the same cells. Similarly, Northern blots of total cellular RNA and in situ hybridization studies of transgenic animals demonstrated a maximal increase in transgene expression at 6 h after 1,25-(OH)2D3 injection (23.6+/-3.6-fold) with a return to levels equivalent to uninjected animals by 24 h (1.2+/-0.1-fold). This increase in transgene expression was also observed at 6 h after 1,25-(OH)2D3 treatment in animals on a low calcium diet (25.2+/-7.7-fold) as well as in transgenic mice fed a vitamin D-deficient diet containing strontium chloride to block endogenous 1,25-(OH)2D3 production (7.5+/-0.9-fold). In contrast to the increased transgene expression levels, neither endogenous mouse osteocalcin mRNA levels nor serum osteocalcin levels were significantly altered after 1,25-(OH)2D3 injection in transgenic or nontransgenic mice, regardless of dietary manipulations, supporting evidence for different mechanisms regulating the response of human and mouse osteocalcin genes to 1,25-(OH)2D3. Although the cis- and trans-acting mechanisms directing cell-specific gene expression appear to be conserved in the mouse and human osteocalcin genes, responsiveness to 1,25-(OH)2D3 is not. The mouse osteocalcin genes do not respond to 1,25-(OH)2D3 treatment, but the human osteocalcin-directed transgene is markedly upregulated under the same conditions and in the same cells. The divergent responses of these homologous genes to 1,25-(OH)2D3 are therefore likely to be due to differences in mouse and human osteocalcin-regulatory sequences rather than to variation in the complement of trans-acting factors present in mouse osteoblastic cells. Increased understanding of these murine-human differences in osteocalcin regulation may shed light on the function of osteocalcin and its regulation by vitamin D in bone physiology.  相似文献   

12.
13.
14.
15.
26,26,26,27,27,27-Hexafluo-1,25(OH)2 vitamin D3, the hexafluorinated analog of 1,25(OH)2 vitamin D3, has been reported to be several times more potent than the parent compound regarding some vitamin D actions. The reason for enhanced biologic activity in the kidneys and small intestine appears to be related to F6-1,25(OH)2 vitamin D3 metabolism to ST-232, 26,26,26,27,27,27-hexafluoro-1 alpha, 23S,25-trihydroxyvitamin D3, a bioactive 23S-hydroxylated form that is resistant to further metabolism. Since F6-1,25(OH)2 vitamin D3 is considered to prevent osteoporotic decrease in bone mass by suppressing bone turnover, we here compared the distribution and metabolism of [1 beta-3H]F6-1,25(OH)2 vitamin D3 and [1 beta-3H]1,25(OH)2 vitamin D3 in bones of rats by autoradiography and radio-HPLC. In the dosed groups, radioactivity was detected locally in the metaphysis, the modeling site in bones. As compared with the [1 beta-3H]1,25(OH)2 vitamin D3 case, [1 beta-3H]F6-1,25(OH)2 vitamin D3 was significantly retained in this site, and moreover, it mainly persisted as unchanged compound and ST-232. These findings indicate that the reason for the higher potency of F6-1,25(OH)2 vitamin D3 than 1,25(OH)2 vitamin D3 in bones are linked with increased distribution and reduced metabolism.  相似文献   

16.
Using 1 alpha,2 alpha-oxido-cholesta-5,7-diene-3 beta,25-diol (2) as a starting material, the provitamins of calcitriol with an additional 2 beta-chloro-, 2 beta-fluoro-, and 2 beta-methoxy-substituent (3,4,5) are obtained by transdiaxial opening of the oxirane ring with nucleophiles. An efficient irradiation process is described and used for the synthesis of the 2 beta-substituted calcitriols NS2 (2 beta-Cl), NS6 (2 beta-F), and NS7 (2 beta-OCH3). The affinity of these three vitamin D3 derivatives to the vitamin D receptor (VDR) and was determined. These three A-ring derivatives of 1,25(OH)2D3 were further tested for their proliferation-inhibitory and anti-adipogenic activity and gene regulatoric activity in the vitamin D3-sensitive, murine, mesenchymal cell line C3H10T1/2. The VDR-affinity of the 2 beta-chloro derivative, NS2 (2 beta-Cl), was identical to 1,25(OH)2D3 and its vitamin D binding protein (DBP)-affinity was in the range of 1,25(OH)2D3. NS2 inhibited the proliferation of C3H10T1/2(BMP-4)-cells in the presence of fetal calf serum (FCS) 9 times, and, in the absence of FCS, 111 times lower, as compared with 1,25(OH)2D3. The ID50 dose of adipogenesis-inhibition of NS2 was 13 times higher than the ID50 dose of 1,25(OH)2D3. NS6 (2 beta-F) displayed a slightly higher affinity than 1,25(OH)2D3 to the VDR and DBP-affinity. The proliferation-inhibitory activity in the presence of FCS was 90 times higher, as compared with 1,25(OH)2D3. In the FCS-free proliferation assay NS6 displayed an inhibitory activity in the range of 1,25(OH)2D3. NS6 showed an 5 times higher potency to inhibit (pre)adipocyte-differentiation in C3H10T1/2(BMP-4)-cells than 1,25(OH)2D3. NS7 (2 beta-OCH3) showed the lowest VDR-affinity and the highest DBP-affinity of the tested substances, as compared with 1,25(OH)2D3 (11 times lower and 35 times higher respectively). Its proliferation-inhibitory activity in the FCS-free medium was 9 times and in the FCS-containing assay 67 times lower in comparison with 1,25(OH)2D3. A 1250 times higher NS7-dose was needed to reach the anti-adipogenic potency of 1,25(OH)2D3. All tested substances displayed a similar ability to activate a vitamin D responsive element-regulated reporter gene compared to 1,25(OH)2D3 (NS2 and NS6: 1.3 times higher activity; NS7: 1,4 times lower activity).  相似文献   

17.
18.
The secosteroid hormone, 1,25-dihydroxyvitamin D [1,25(OH)2D], plays a crucial role in normal bone growth, calcium metabolism, and tissue differentiation. The key step in the biosynthesis of 1,25(OH)2D is its 1 alpha-hydroxylation from 25-hydroxyvitamin D (25-OHD) in the kidney. Because its expression in the kidney is very low, we cloned and sequenced cDNA for 25-OHD-1 alpha-hydroxylase (P450c1 alpha) from human keratinocytes, in which 1 alpha-hydroxylase activity and mRNA expression can be induced to be much greater. P450c1 alpha mRNA was expressed at much lower levels in human kidney, brain, and testis. Mammalian cells transfected with the cloned P450c1 alpha cDNA exhibit robust 1 alpha-hydroxylase activity. The identity of the 1,25(OH)2D3 product synthesized in transfected cells was confirmed by HPLC and gas chromatography-mass spectrometry. The gene encoding P450c1 alpha was localized to chromosome 12, where the 1 alpha-hydroxylase deficiency syndrome, vitamin D-dependent rickets type 1 (VDDR-1), has been localized. Primary cultures of human adult and neonatal keratinocytes exhibit abundant 1 alpha-hydroxylase activity, whereas those from a patient with VDDR-1 lacked detectable activity. Keratinocyte P450c1 alpha cDNA from the patient with VDDR-1 contained deletion/frameshift mutations either at codon 211 or at codon 231, indicating that the patient was a compound heterozygote for two null mutations. These findings establish the molecular genetic basis of VDDR-1, establish a novel means for its study in keratinocytes, and provide the sequence of the key enzyme in the biological activation of vitamin D.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号